Abstract
Objective: This study aims at assessment of tumor size changes in patients with oligometastatic RCC who received neoadjuvant therapy.
Materials and methods: We reviewed clinical records of patients diagnosed with oligometastatic RCC who received neoadjuvant therapy. Included patients had a diagnosis of oligometastatic RCC, administration of neoadjuvant therapy, and availability of baseline and follow-up imaging data. Tumor size measurements were extracted from radiology reports and direct review of imaging studies. Changes in tumor sizes were assessed by comparing measurements before and after neoadjuvant therapy. Treatment decisions following neoadjuvant therapy were made by a multidisciplinary team of experts considering imaging response, patient performance status, and disease characteristics.
Results: All patients had undergone neoadjuvant treatment, and tumor size changes post-neoadjuvant therapy demonstrated a spectrum of responses, with patients showing different degrees of tumor shrinkage. Imaging-based response evaluation was used in decision making for further subsequent treatment strategies.
Conclusion: Neoadjuvant therapy represents a promising strategy to enhance the management of oligometastatic RCC by reducing tumor burden and improving the feasibility of subsequent curative treatments. Comprehensive imaging assessment is essential to guide multidisciplinary decision-making and optimize patient outcomes. Continued research efforts are warranted to refine treatment algorithms and integrate emerging systemic and local therapies within personalized care paradigms.
Keywords:Renal cell cancer; Oligometastasis; Treatment response
Abbreviations:SCLC: Small Cell Lung Cancer; IMRT: Intensity-Modulated Radiotherapy; stereotactic techniques, ART: Adaptive Radiotherapy; CT: Computed Tomography; MRI: Magnetic Resonance Imaging; AAPM: Association of Physicists in Medicine; ICRU: International Commission on Radiation Units and Measurements; HU: Hounsfield Units
Introduction
Renal cell carcinoma (RCC) constitutes a relatively smaller proportion of adult malignancies worldwide, but could follow an aggressive disease course with its propensity for metastatic spread and resistance to conventional therapies [1-7]. Although localized RCC can often be effectively treated with nephrectomy, the presence of metastatic disease substantially worsens prognosis [2-7]. Within the spectrum of metastatic RCC, the subset of patients with oligometastatic disease-commonly defined as having five or fewer metastatic lesions-has garnered increasing clinical interest as a potentially more favorable group that might benefit from aggressive multimodal therapy [2-7].
Oligometastatic RCC represents an intermediate disease state between localized and widespread metastatic disease, where the metastatic burden is limited and possibly amenable to curative-intent approaches [3-7]. Recent advances in systemic therapies, particularly targeted agents such as vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs), mammalian target of rapamycin (mTOR) inhibitors, and immune checkpoint inhibitors, have significantly transformed the treatment landscape of RCC [2-7]. These agents have shown efficacy not only in controlling metastatic disease but also as neoadjuvant therapies, potentially downstaging tumors prior to local interventions [2-7].
Neoadjuvant therapy in oligometastatic RCC may serve several important purposes: reducing tumor size to facilitate subsequent surgical resection or ablation, eradicating micrometastatic disease, improving local control which may ultimately translate into enhancing survival outcomes. Furthermore, the response to neoadjuvant treatment provides prognostic information and may guide personalized therapeutic decisions.
In parallel, the evolution of radiotherapy techniquessuch as stereotactic body radiotherapy (SBRT), image-guided radiotherapy (IGRT), and adaptive radiotherapy (ART)-has opened new avenues for the treatment of oligometastatic lesions with high precision and limited toxicity for several disease sites throughout the human body [2-106].
These technologies allow targeted delivery of ablative doses to metastatic sites, complementing systemic therapies and surgery within a multidisciplinary treatment framework. Despite these advances, the assessment of tumor response to neoadjuvant therapy remains challenging in RCC due to the heterogeneous nature of the disease and variable radiographic appearances. Conventional criteria such as RECIST may not fully capture the biological effects of targeted or immunotherapy, necessitating comprehensive evaluation strategies. This study aims at assessment of tumor size changes in patients with oligometastatic RCC who received neoadjuvant therapy.
Materials and Methods
We reviewed clinical records of patients diagnosed with oligometastatic RCC who received neoadjuvant therapy. Included patients had a diagnosis of oligometastatic RCC, administration of neoadjuvant therapy, and availability of baseline and followup imaging data. Tumor size measurements were extracted from radiology reports and direct review of imaging studies. Changes in tumor sizes were assessed by comparing measurements before and after neoadjuvant therapy. Treatment decisions following neoadjuvant therapy were made by a multidisciplinary team of experts considering imaging response, patient performance status, and disease characteristics.
Results
All patients had undergone neoadjuvant treatment, and tumor size changes post-neoadjuvant therapy demonstrated a spectrum of responses, with patients showing different degrees of tumor shrinkage. Imaging-based response evaluation was used in decision making for further subsequent treatment strategies.
Discussion
RCC accounts for a relatively small proportion of adult malignancies worldwide but can exhibit an aggressive clinical course due to its tendency for metastatic spread and resistance to conventional treatments [1-7]. While localized RCC is often effectively managed with nephrectomy, the development of metastatic disease significantly worsens the prognosis [2-7]. Among metastatic RCC patients, those with oligometastatic disease-typically defined as having five or fewer metastatic lesions—have attracted growing attention as a distinct subgroup that may benefit from more aggressive, multimodal therapeutic approaches [2-7].
Oligometastatic RCC represents an intermediate stage between localized and wide metastatic disease, characterized by a limited tumor burden that may be amenable to curative-intent treatments [3-7]. The advent of novel systemic therapies, including vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs), mammalian target of rapamycin (mTOR) inhibitors, and immune checkpoint inhibitors, has dramatically reshaped the therapeutic landscape for RCC [2-7]. These agents have demonstrated efficacy not only in controlling metastatic disease but also as neoadjuvant therapies, offering the potential to downstage tumors before definitive local interventions [2-7].
Neoadjuvant treatment in oligometastatic RCC serves several critical roles: reducing tumor volume to facilitate subsequent surgical resection or ablative procedures, eliminating micrometastatic disease, and improving local control, which may ultimately translate into enhanced survival outcomes. Moreover, tumor response to neoadjuvant therapy can provide valuable prognostic information and inform personalized treatment planning. Concurrently, advances in radiotherapy techniquessuch as stereotactic body radiotherapy (SBRT), image-guided radiotherapy (IGRT), and adaptive radiotherapy (ART) have expanded therapeutic options for oligometastatic lesions across various cancer types with high precision and minimal toxicity [2- 106].
These technologies enable the delivery of ablative doses directly to metastatic sites, complementing systemic therapies and surgery within a coordinated multidisciplinary framework. Despite these progressions, evaluating tumor response to neoadjuvant therapy in RCC remains challenging due to the disease’s heterogeneity and variable imaging characteristics. Traditional response criteria, such as RECIST, may not fully capture the biological effects of targeted or immunotherapies, highlighting the need for comprehensive assessment strategies. This study aimed to evaluate tumor size changes in patients with oligometastatic RCC who underwent neoadjuvant therapy. We reviewed clinical records of patients diagnosed with oligometastatic RCC who received neoadjuvant therapy. Included patients had a diagnosis of oligometastatic RCC, administration of neoadjuvant therapy, and availability of baseline and followup imaging data. Tumor size measurements were extracted from imaging reports and direct review of imaging studies.
Changes in tumor sizes were assessed by comparing measurements before and after neoadjuvant therapy. Treatment decisions following neoadjuvant therapy were made by a multidisciplinary team of experts considering imaging response, patient performance status, and disease characteristics. All patients had undergone neoadjuvant treatment, and tumor size changes post-neoadjuvant therapy demonstrated a spectrum of responses, with patients showing different degrees of tumor shrinkage. Imaging-based response evaluation was used in decision making for further subsequent treatment strategies.
Oligometastatic RCC occupies a unique clinical niche characterized by limited metastatic dissemination and the potential for curative-intent therapy [2-7]. The concept of oligometastasis challenges the traditional dichotomy of localized versus widespread disease and supports a paradigm shift towards aggressive multimodal treatment to improve long-term outcomes [2-7]. Our findings in this study reinforce the notion that neoadjuvant therapy can effectively reduce tumor burden in a significant subset of patients with oligometastatic RCC. The incorporation of neoadjuvant therapy offers multiple theoretical and practical benefits.
First, tumor downsizing may facilitate subsequent therapies that might otherwise be unfeasible due to size or anatomical considerations. Second, neoadjuvant treatment targets both macroscopic and micro metastatic disease, potentially reducing recurrence risk post-local treatment. Third, treatment response can serve as a biomarker of tumor biology, identifying patients more likely to benefit from aggressive interventions. Targeted therapies such as VEGFR TKIs (e.g., sunitinib, pazopanib) and mTOR inhibitors have demonstrated promising response rates in metastatic RCC, with tumor shrinkage frequently observed in the neoadjuvant settings. More recently, immune checkpoint inhibitors, alone or in combination with TKIs, have exhibited promising efficacy and durable responses, reshaping the treatment algorithm for metastatic RCC. However, the optimal sequencing, duration, and combination of neoadjuvant therapies remain areas of ongoing research.
From a radiotherapy perspective, advances in technology including SBRT and IGRT permit precise targeting of metastatic lesions with ablative doses, minimizing exposure to surrounding healthy tissues and reducing treatment-related toxicity [8-106]. These modalities are particularly suited to the oligometastatic setting, where limited lesions can be treated with curative intent. Integrating radiotherapy with systemic neoadjuvant therapy requires careful multidisciplinary coordination to optimize timing and maximize therapeutic synergy. Our study highlights the importance of detailed imaging assessment in evaluating tumor response. While size-based criteria such as RECIST provide a standardized framework, functional imaging modalities (e.g., PET/CT, diffusion-weighted MRI) and volumetric analyses may offer additional insights into biological response, particularly in the context of immunotherapy where radiographic pseudoprogression may occur.
Conclusion
Neoadjuvant therapy represents a promising strategy to enhance the management of oligometastatic RCC by reducing tumor burden and improving the feasibility of subsequent curative treatments. Comprehensive imaging assessment is essential to guide multidisciplinary decision-making and optimize patient outcomes. Continued research efforts are warranted to refine treatment algorithms and integrate emerging systemic and local therapies within personalized care paradigms.
References
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A (2025) Cancer statistics, 2025. CA Cancer J Clin 75(1): 10-45.
- Chen YW, Wang L, Panian J, Dhanji S, Derweesh I, et al. (2023) Treatment Landscape of Renal Cell Carcinoma. Curr Treat Options Oncol 24(12): 1889-1916.
- Magne N, Milhade N, Sargos P, Bouleftour W (2023) Approaches to Oligometastatic Renal Cell Carcinoma. Curr Oncol Rep 25(4): 251-256.
- Anderson AC, Ho J, Hall ET, Hannan R, Liao JJ, et al. (2024) Focal therapy for oligometastatic and oligoprogressive renal cell carcinoma: a narrative review. Future Oncol 20(33): 2573-2588.
- Donini M, Buti S, Massari F, Mollica V, Rizzo A, Montironi R, Bersanelli M, Santoni M (2020) Management of oligometastatic and oligoprogressive renal cell carcinoma: state of the art and future directions. Expert Rev Anticancer Ther 20(6): 491-501.
- Magné N, Latorzeff I (2021) Oligometastatic renal cell carcinoma: radiotherapy as a new standard of care? Lancet Oncol 22(12): 1644-1645.
- David C, Muhammad A, Cristian U, Ben T, Arun A, et al. (2024) SABR for oligometastatic renal cell carcinoma. Clin Transl Radiat Oncol 45: 100739.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2023) Adaptive radiation therapy (art) for patients with limited-stage small cell lung cancer (LS-SCLC): A dosimetric evaluation. Indian J Cancer 60(1):140-147.
- Gamsiz H, Sager O, Uysal B, Dincoglan F, Demiral S, et al. (2023) Outcomes of Sterotactic Body Radiotherapy (SBRT) for pelvic lymph node recurrences after adjuvant or primary radiotherapy for prostate cancer. J Cancer Res Ther 19(Suppl 2): S851-S856.
- Uysal B, Gamsiz H, Sager O, Dincoglan F, Demiral S, et al. (2022) Comparative outcomes of short-term and long-term fractionation with temozolomide in older glioblastoma patients: Single-center experience. J Cancer Res Ther 18(6): 1610-1615.
- Gamsiz H, Sager O, Uysal B, Dincoglan F, Demiral S, et al. (2022) Active breathing control guided stereotactic body ablative radiotherapy for management of liver metastases from colorectal cancer. Acta Gastroenterol Belg 85(3): 469-475.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2022) Concise review of radiosurgery for contemporary management of pilocytic astrocytomas in children and adults. World J Exp Med 12(3): 36-43.
- Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2022) Optimal timing of thoracic irradiation for limited stage small cell lung cancer: Current evidence and future prospects. World J Clin Oncol 13(2): 116-124.
- Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2021) Evaluation of breathing-adapted radiation therapy for right-sided early stage breast cancer patients. Indian J Cancer 58(2): 195-200.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Omission of Radiation Therapy (RT) for Metaplastic Breast Cancer (MBC): A Review Article. International Journal of Research Studies in Medical and Health Sciences 6: 10-15.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Concise review of stereotactic irradiation for pediatric glial neoplasms: Current concepts and future directions. World J Methodol 11(3): 61-74.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2020) Adaptive radiation therapy of breast cancer by repeated imaging during irradiation. World J Radiol 12(5): 68-75.
- Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Gamsiz H, et al. (2020) Multimodality management of cavernous sinus meningiomas with less extensive surgery followed by subsequent irradiation: Implications for an improved toxicity profile. J Surg Surgical Res 6: 056-061.
- Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, Uysal B, et al. (2020) Single Fraction Stereotactic Radiosurgery (SRS) versus Fractionated Stereotactic Radiotherapy (FSRT) for Vestibular Schwannoma (VS). J Surg Surgical Res 6: 062-066.
- Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). Arch Otolaryngol Rhinol 6: 016-020.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. Curr Radiopharm 12(1): 4-10.
- Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56(2): 151-156.
- Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10(11): 369-374.
- Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. Indian J Cancer 56(3): 202-206.
- Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36(6): 401-406.
- Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. Int J Radiol Imaging Technol 80: 187-190.
- Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101.
- Dincoglan F, Sager O, Demiral S, Uysal B, Gamsiz H, et al. (2017) Radiosurgery for recurrent glioblastoma: A review article. Neurol Disord Therap 1: 1-5.
- Demiral S, Dincoglan F, Sager O, Gamsiz H, Uysal B, et al. (2016) Hypofractionated stereotactic radiotherapy (HFSRT) for who grade I anterior clinoid meningiomas (ACM). Jpn J Radiol 34(11): 730-737.
- Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, et al. (2015) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. Tumori 101(2): 179-184.
- Gamsiz H, Beyzadeoglu M, Sager O, Demiral S, Dincoglan F, et al. (2015) Evaluation of stereotactic body radiation therapy in the management of adrenal metastases from non-small cell lung cancer. Tumori 101(1): 98-103.
- Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101(1): 84-90.
- Sager O, Dincoglan F, Beyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: Current concepts, recent advances and future perspectives. CNS Oncol 4(2): 105-114.
- Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Gamsiz H, et al. (2014) Evaluation of linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. Ann Saudi Med 34(1): 54-58.
- Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of Linear Accelerator (Linac)-Based Stereotactic Radiosurgery (Srs) for the Treatment of Craniopharyngiomas. UHOD-Uluslararasi Hematoloji Onkoloji Dergisi 24(2): 123-129.
- Sager O, Beyzadeoglu M, Dincoglan F, Gamsiz H, Demiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. Tumori 100(2): 184-188.
- Ozsavaş EE, Telatar Z, Dirican B, Sager O, Beyzadeoğlu M (2014) Automatic segmentation of anatomical structures from CT scans of thorax for RTP. Comput Math Methods Med 2014: 472890.
- Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (linac)-based stereotactic radiosurgery (srs) for the treatment of craniopharyngiomas. UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 24: 123-129.
- Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100(2): 179-183.
- Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100(3): 302-306.
- Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience. Tumori 99(5): 617-622.
- Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. J BUON 18(3): 717-722.
- Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99(1): 76-82.
- Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. Neoplasma 60(3): 322-327.
- Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59(3): 333-340.
- Saǧer Ö, Dinçoǧlan F, Gamsiz H, Demiral S, Uysal B, et al. (2012) Evaluation of the impact of integrated [18f]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging on staging and radiotherapy treatment volume definition of nonsmall cell lung cancer. Gulhane Med J 54(3): 220-227.
- Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) The Role of Active Breathing Control-Moderate Deep Inspiration Breath-Hold (ABC-mDIBH) Usage in non-Mastectomized Left-sided Breast Cancer Radiotherapy: A Dosimetric Evaluation UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 22(3): 147-155.
- Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. Gulhane Med J 54(3): 190-198.
- Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin S et al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. Tumori 98(5): 630-635.
- Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience. Vojnosanit Pregl 68(11): 961-966.
- Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2024) Assessment of Changes in Tumor Size After Induction Systemic Therapy for Locally Advanced Cervical Squamous Cell Carcinoma Running title: Tumor size changes in cervical carcinoma. Cancer Ther Oncol Int J 26(1): 556178.
- Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2024) Reappraisal of Target Definition for Sacrococcygeal Chordoma: Comparative Assessment with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Biomed J Sci & Tech Res 55(1): 46686-46692.
- Dincolan F, Beyzadeoglu M, Demiral S, Sager O (2024) Appraisal of Changes in Tumor Volume After Neoadjuvant Systemic Therapy for Hepatocellular Carcinoma (HCC). Cancer Ther Oncol Int J 26(2): 556184.
- Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Evaluation of Target Definition for Radiotherapeutic Management of Recurrent Merkel Cell Carcinoma (MCC). Canc Therapy & Oncol Int J 24(2): 556133.
- Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2023) Reappraisal of Treatment Volume Determination for Recurrent Gastroesophageal Junction Carcinoma (GJC). Biomed J Sci & Tech Res 50 (5): 42061-42066.
- Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2023) An Original Article Revisiting the Utility of Multimodality Imagıng For Refıned Target Volume Determinatıon Of Recurrent Kidney Carcinoma. Canc Therapy & Oncol Int J 23(5): 556122.
- Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Appraisal of Target Definition for Recurrent Cancers of the Supralottic Larynx. Biomed J Sci & Tech Res 50 (5): 42131-42136.
- Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2022) Assessment of Target Definition for Extramedullary Soft Tissue Plasmacytoma: Use of Multımodalıty Imaging for Improved Targetıng Accuracy. Canc Therapy & Oncol Int J 22(4): 556095.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Target Volume Determination for Recurrent Uterine Carcinosarcoma: An Original Research Article Revisiting the Utility of Multimodality Imaging. Canc Therapy & Oncol Int J 22(3): 556090.
- Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Reappraisal of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Target Definition for Radiotherapeutic Management of Recurrent Anal Squamous Cell Carcinoma (ASCC): An Original Article. Canc Therapy & Oncol Int J 22(2): 556085.
- Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2022) An Original Article for Assessment of Multimodality Imaging Based Precise Radiation Therapy (Rt) in the Management of Recurrent Pancreatic Cancers. Canc Therapy & Oncol Int J 22(1): 556078.
- Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2022) Assessment of Target Volume Definition for Precise Radiotherapeutic Management of Locally Recurrent Biliary Tract Cancers: An Original Research Article. Biomed J Sci & Tech Res 46(1): 37054-37059.
- Sager O, Demiral S, Dincoglan F, Beyzadeoglu M. (2022) Radiation Therapy (RT) Target Volume Determination for Locally Advanced Pyriform Sinus Carcinoma: An Original Research Article Revisiting the Role of Multimodality Imaging. Biomed J Sci & Tech Res 45(1): 36155-36160.
- Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Improved Target Volume Definition for Radiotherapeutic Management of Parotid Gland Cancers by use of Multimodality Imaging: An Original Article. Canc Therapy & Oncol Int J 21(3): 556062.
- Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Reappraisal of multimodality imaging for improved Radiation Therapy (RT) target volume determination of recurrent Oral Squamous Cell Carcinoma (OSCC): An original article. J Surg Surgical Res 8(1): 004-008.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Multimodality imaging-based treatment volume definition for recurrent Rhabdomyosarcomas of the head and neck region: An original article. J Surg Surgical Res 8(2): 013-018.
- Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2022) Appraisal of Target Definition for Management of Paraspinal Ewing Tumors with Modern Radiation Therapy (RT): An Original Article. Biomed J Sci & Tech Res 44(4): 35691-35696.
- Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Assessment of Target Volume Definition for Contemporary Radiotherapeutic Management of Retroperitoneal Sarcoma: An Original Article. Biomed J Sci & Tech Res 44(5): 35883-35887.
- Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2021) Assessment of Multimodality Imaging for Target Definition of Intracranial Chondrosarcomas. Canc Therapy Oncol Int J 18(2): 001-005.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Impact of Multimodality Imaging to Improve Radiation Therapy (RT) Target Volume Definition for Malignant Peripheral Nerve Sheath Tumor (MPNST). Biomed J Sci Tech Res 34(3): 26734-26738.
- Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Multimodality Imaging Based Treatment Volume Definition for Reirradiation of Recurrent Small Cell Lung Cancer (SCLC). Arch Can Res 9(1): 1-5.
- Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2021) Radiation Therapy (RT) Target Volume Definition for Peripheral Primitive Neuroectodermal Tumor (PPNET) by Use of Multimodality Imaging: An Original Article. Biomed J Sci & Tech Res 34: 26970-26974.
- Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2021) Evaluation of Target Definition for Management of Myxoid Liposarcoma (MLS) with Neoadjuvant Radiation Therapy (RT). Biomed J Sci Tech Res 33: 26171-26174.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Radiation Therapy (RT) target determination for irradiation of bone metastases with soft tissue component: Impact of multimodality imaging. J Surg Surgical Res 7(1): 042-046.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Evaluation of Changes in Tumor Volume Following Upfront Chemotherapy for Locally Advanced Non Small Cell Lung Cancer (NSCLC). Glob J Cancer Ther 7: 031-034.
- Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Assessment of posterior fossa target definition by multimodality imaging for patients with medulloblastoma. J Surg Surgical Res 7: 037-041.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Assessment of the role of multimodality imaging for treatment volume definition of intracranial ependymal tumors: An original article. Glob J Cancer Ther 7: 043-045.
- Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2020) Target Volume Determination for Precise Radiation Therapy (RT) of Central Neurocytoma: An Original Article. International Journal of Research Studies in Medical and Health Sciences 5: 29-34.
- Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2020) Utility of Multimodality Imaging Based Target Volume Definition for Radiosurgery of Trigeminal Neuralgia: An Original Article. Biomed J Sci & Tech Res 26(2): 19728-19732.
- Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Assessment of Target Volume Definition for Radiosurgery of Atypical Meningiomas with Multimodality Imaging. Journal of Hematology and Oncology Research 3: 14-21.
- Dincoglan F, Beyzadeoglu M, Demiral S, Sager O (2020) Assessment of Treatment Volume Definition for Irradiation of Spinal Ependymomas: an Original Article. ARC Journal of Cancer Science 6(1): 1-6.
- Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2020) Target Volume Definition for Stereotactic Radiosurgery (SRS) Of Cerebral Cavernous Malformations (CCMs). Canc Therapy & Oncol Int J 15(4): 555917.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Treatment Volume Determination for Irradiation of Recurrent Nasopharyngeal Carcinoma with Multimodality Imaging: An Original Article. ARC Journal of Cancer Science 6(2): 18-23.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Assessment of Target Volume Definition for Irradiation of Hemangiopericytomas: An Original Article. Canc Therapy & Oncol Int J 17(2): 555959.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Treatment Volume Determination for Irradiation of chordoma: an Original Article. International Journal of Research Studies in Medical and Health Sciences 5 (10): 3-8.
- Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2020) Multimodality Imaging Based Target Definition of Cervical Lymph Nodes in Precise Limited Field Radiation Therapy (Lfrt) for Nodular Lymphocyte Predominant Hodgkin Lymphoma (Nlphl). ARC Journal of Cancer Science 6(2): 06-11.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Radiosurgery Treatment Volume Determination for Brain Lymphomas with and without Incorporation of Multimodality Imaging. Journal of Medical Pharmaceutical and Allied Sciences 9: 2398-2404.
- Beyzadeoglu M, Dincoglan F, Sager O, Demiral S (2020) Determination of Radiosurgery Treatment Volume for Intracranial Germ Cell Tumors (GCTS). Asian Journal of Pharmacy, Nursing and Medical Sciences 8(3): 18-23.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2020) Target Definition of orbital Embryonal Rhabdomyosarcoma (Rms) by Multimodality Imaging: An Original Article. ARC Journal of Cancer Science 6(2): 12-17.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Target Volume Determination for Irradiatıon of Pilocytic Astrocytomas: An Original Article. ARC Journal of Cancer Science 6(1): 19-23.
- Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Evaluation of Radiosurgery Target Volume Definition for Tectal Gliomas with Incorporation of Magnetic Resonance Imaging (MRI): An Original Article. Biomedical Journal of Scientific & Technical Research (BJSTR) 27: 20543-20547.
- Beyzadeoglu M, Sager O, Dincoglan F, Demiral S (2019) Evaluation of Target Definition for Stereotactic Reirradiation of Recurrent Glioblastoma. Arch Can Res 7(1): 3.
- Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High-Grade Gliomas (HGGs). Concepts in Magnetic Resonance.
- Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Utility of Magnetic Resonance Imaging (Imaging) in Target Volume Definition for Radiosurgery of Acoustic Neuromas. Int J Cancer Clin Res 6: 119.
- Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Radiosurgery Treatment Planning for Pituitary Adenomas. Canc Therapy & Oncol Int J 13: 555857.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Multimodality Imaging for Radiosurgical Management of Arteriovenous Malformations. Asian Journal of Pharmacy, Nursing and Medical Sciences 7(1): 7-12.
- Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2019) Evaluation of Radiosurgery Target Volume Determination for Meningiomas Based on Computed Tomography (CT) And Magnetic Resonance Imaging (MRI). Cancer Sci Res Open Access 5: 1-4.
- Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of target definition based on Multimodality imaging for radiosurgical Management of glomus jugulare tumors (GJTs). Canc Therapy & Oncol Int J 15: 555909.
- Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Incorporation of Multimodality Imaging in Radiosurgery Planning for Craniopharyngiomas: An Original Article. SAJ Cancer Sci 6: 103.
- Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2018) Evaluation of Target Volume Determination for Single Session Stereotactic Radiosurgery (SRS) of Brain Metastases. Canc Therapy & Oncol Int J 12: 555848.
- Cinar D, Karadakovan A, Akin M (2022) Effects of Paper Marbling Art in the Cancer Rehabilitation Process: Descriptive Research. Journal of Traditional Medical Complementary Therapies 5: 132-142.
- Akin M, Duzova M (2022) Evaluatin of Treatment Volume Determination for Anaplastic Oligodendrogliomas Based on Multimodality Imaging: An Original Article. Celal Bayar Universitesi Saglik Bilimleri Enstitusu Dergisi 9(3): 414-417.
- Cinkaya A, Akin M, Sengul A (2016) Evaluation of treatment outcomes of triple negative breast cancer. Journal of Cancer Research and Therapeutics 12(1): 150-154.
- Duzova M, Akin M (2022) Evaluation of survival outcomes and prognostic factors in acinic cell carcinomas of the parotid gland receiving adjuvant radiotherapy. Anatolian Current Medical Journal 4(3): 290-294.
- Akin M (2022) Tobacco and lung cancer in elderly patients located in southern marmara: epidemiological study. Celal Bayar Universitesi Saglik Bilimleri Enstitusu Dergisi 9(2): 310-313.
- Akin M, Duzova M (2022) Single fraction image guided radiation therapy for management of bone metastases during the COVID-19 pandemic. Journal of Health Sciences and Medicine 5(4): 961-965.

















