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Abstract

Percutaneous catheter pumps are intraventricular temporary mechanical circulatory support (MCS) devices that are positioned across the 
aortic valve into the left ventricle (LV) and provide continuous antegrade blood flow from the LV into the ascending aorta (AA). MCS devices are 
most often computationally evaluated as isolated devices subject to idealized steady-state blood flow conditions. In clinical practice, MCS devices 
operate connected to or within diseased pulsatile native hearts and are often complicated by hemocompatibility related adverse events such as 
stroke, bleeding, and thrombosis. Whereas aspects of the human circulation are increasingly being simulated via computational methods, the pre-
cise interplay of pulsatile LV hemodynamics with MCS pump hemocompatibility remains mostly unknown and not well characterized. Technolo-
gies are rapidly converging such that next-generation MCS devices will soon be evaluated in virtual physiological environments that increasingly 
mimic clinical settings. The purpose of this communication short is to report results and lessons learned from an exploratory CFD simulation of 
hemodynamics and thrombosis for a catheter pump situated within a virtual in-vivo left heart environment.  
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Introduction

Innovative modeling and imaging techniques are rapidly 
converging to improve outcomes in patients with MCS devices 
[1]. For example, high variability in heart shapes and contractility 
can be characterized using cardiac computed tomography and 
statistical shape modeling, and when combined with CFD can 
assess intracardiac flow features [2]. The literature reveals a 
few early CFD studies involving MCS catheter pumps [3,4], one 
CFD study that considered an isolated catheter pump connected 
to the inflow of an ascending aorta [5], and only a few studies 
reporting any form of CFD-based blood damage modeling for a 
catheter pump [6,7]. Blood damage in terms of hemolysis [8] and 
thrombosis [9,10] are not uncommon in catheter pumps. We have 
discovered no CFD publications on catheter pump performance in 
a clinically relevant in-vivo setting, specifically, situated within a 
pulsatile LV and transporting blood into the AA. Our current efforts 
seek to explore and address the challenges of performing clinically  

 
relevant MCS simulations including predicting hemocompatibility 
related adverse events.  

To this end, a generic temporary MCS catheter pump with 
a blood flow path inspired by the Impella 5.0 [11] was situated 
within a static geometry consisting of an idealized LV and AA 
(Figure 1). We applied blood DamageFoam, an Open FOAM-based 
CFD code with multifactorial and synergistic models of blood 
damage [12], to the catheter pump within this virtual in-vivo 
environment to analyze its hemodynamic performance at a fixed 
rotor speed of 20KRPM. The rotor had a 6.64mm outer diameter 
and a 0.3mm blade tip gap. Blood was modeled as laminar with 
density of 1050 kg/m3 and asymptotic viscosity of 3.6cP. The LV 
and AA regions were modeled as two independent fluid domains, 
each with independent inflow and outlet boundary conditions. 
The catheter pump was modeled as a third flow domain embedded 
inside the LV and AA domains and connected to both domains via 
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arbitrary mesh interfaces. The inlet cannula crossed the aortic 
valve boundaries and permitted blood to be pumped from the LV 
domain and transported into the AA domain. Boundary conditions 
of the LV domain consisted of steady, uniform inlet (pseudo-mitral 
valve) flowrate of 5.0LPM and a constant pressure of 90 mmHg 
imposed at the aortic valve outlet. The AA domain had a steady 
inlet flowrate of 0.5LPM at the aortic valve and constant 90 mmHg 
pressure at the aortic geometry outlet. The non-physiological 

imposition of steady flow as inlet boundary condition for the 
non-deforming LV domain was chosen for numerical stability 
reasons. An unsteady pulsatile inlet flow condition for a static LV 
geometry would lead to strong LV suction and highly unrealistic 
intraventricular flows. The three branches of the aortic arch were 
modeled as capped conduits with zero flow. All blood-contacting 
surfaces were treated as non-moving walls. 

Figure 1:  Static geometry of a catheter pump in a virtual in-vivo environment of an LV and ascending aorta.

Blood damage models applied included a hemolysis model 
[13] and a state-of-the-art thrombosis model consisting of seven 
biochemical and biophysical agonists that account for the effects 
of high shear stress-induced activation of von Willebrand Factor 
(vWF) [14]. All anatomical surfaces were treated as non-reactive 
to thrombosis, and all biomaterial surfaces of the pump system 
were treated as reactive to platelet deposition. The critical 
concentration of stretched vWF was set to 200nmol/m3 to 
approximate a typical biomaterial response. 

Conclusion

Regarding hemodynamic performance, CFD predicted a 
blood flow of 4.43 LPM through the catheter pump. Thus, almost 
the entire steady 5.0LPM flow into the LV was delivered into the 
AA by the pump, and the remaining 0.57LPM exited the LV fluid 
domain via its aortic valve outlet. Low pressure (40 to 60mmHg) 
was observed in the inlet cannula, and pressure was essentially 
equalized by the pump to 90 mmHg throughout the entirety of the 

AA domain. The blood velocity field is illustrated in Figure 2a-b. 
The pump generated strong jets of exiting blood flow that induce 
multiple vortices in the ascending aorta. Blood flow relaminarized 
as it flowed down the descending aorta. Shear stresses were 
greatest in the pump rotor region, but less than 700 Pa. Blood 
flow within the pump cannula had high velocity and was primarily 
spatially uniform. 

Regarding hemocompatibility related aspects of the pump, 
moderate hemolysis was predicted. Due to the absence of LV 
contraction in this exploratory simulation, large regions of 
flow stasis and concomitant elevated concentrations of platelet 
agonists and activated platelets were observed in the lower half 
of the LV (Figure 2c). A mixture of resting and activated platelets 
was transported into the AA via the cannula. The simulation 
predicted 40%-50% of platelets in the aortic arch to be activated. 
The thrombosis model predicted moderate degrees of platelet 
deposition on the cage of the inlet cannula and within the catheter 
pump chamber (Figure 2d-f). 
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Figure 2: CFD results in coronal cut-plane passing through the centerline of the catheter pump and inlet cannula (a-c), streamlines colored 
by velocity magnitude (b), and locations of greatest thrombosis deposition (d-f). 

Our exploratory study had many simplifying non-physiological 
assumptions and yielded many lessons learned. Ongoing work is 
addressing several deficiencies in the present model. The first 
lesson learned is that the fluid domains should not be decoupled. 
Rather, the LV and AA should be coupled via a suitable aortic 
valve model that includes variable physiological patency [15,16] 
and supports the crossing of the pump cannula. The addition of a 
mitral valve (MV) is needed to allow for potential pump suction-
induced MV regurgitation during the isovolumetric phases of the 
cardiac cycle. Anatomically realistic models of LV and AA need 
to be considered [17] including dilated LVs of diseased hearts 
[18]. Based on our exploratory study, the neglect of pulsatility 
and LV dynamics negatively impacts predictions of catheter 
pump hemocompatibility, thus realistic LV wall motion should be 
modeled to produce pulsatile flow including valve dynamics [19]. 
Options to incorporate LV pulsatility can include combinations 
of patient data, animal data, and simulated lumped parameter 

model data [20].  For clinical relevance, pathological conditions 
such as various models of heart failure, cardiogenic shock, and 
valvular dysfunction should be included in advanced simulations. 
Such pathophysiological effects could be incorporated by coupling 
CFD to a model of integrative human physiology [21,22]. Due 
to the strong fluid jet-induced mixing in the AA, fully turbulent 
flow simulations should be performed. Windkessel boundary 
conditions or lumped parameter model pressure values should 
be applied to all outlets of the AA to account for downstream 
arterial resistance. Lastly, we will improve deficiencies of our 
blood damage modeling. Platelet deposition dynamics in rotating 
turbomachinery domains will be better handled to eliminate the 
generation of artifactual high shear stresses within wall attached 
thrombus. We will also include the effects of fibrin-mediated 
platelet deposition at biomaterial surfaces in regions of low shear 
stress. This exploratory study indicated that predicted hemolysis 
of small high-speed catheter pumps may be minimal and that 
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inclusion of pulsatile LV dynamics is needed to better evaluate 
thrombotic behaviors. This work represents our first step towards 
simulating hemodynamics and clinically relevant models of 
hemocompatibility of MCS devices within diseased pulsatile 
native left heart environments.
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