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Introduction
Synaptophysin is an integral membrane glycoprotein of synaptic 

vesicles, with a molecular weight of 38,000 Da and containing four 
membrane-spanning domains that it has been proposed both its 
NH2 and COOH-termini located on the cytoplasmic surface [1-3]. 
It is a major component of small synaptic vesicles in central and 
peripheral nervous system and of a population of small vesicles 
in neuroendocrine cells and it was one of the first proteins to be 
identified in the synaptic vesicles and accounts for about 7-10 
% of total synaptic vesicle proteins [1]. Based on the predicated 
structure, it was suggested that synaptophysin forms a channel in 
the synaptic vesicle membrane and acts as the major Ca2+ binding 
protein in synaptic vesicles, for this reason it is believed to play a 
critical role in regulating neurotransmitter release. Previous study 
has been demonstrated that transmitter secretion can be inhibited 
by anti-synaptophysin antibodies [2,4,5]. 

Several laboratories have used the marker synaptophysin 
to quantify the synaptic density and synaptogenesis in neural 
development and neurodegenerative disease. Earlier studies on 
aging and neurodegenerative disorders have correlated change in 
SYP immune reactivity with loss or increase in synaptic densities 
[6]. In a study by Thome et al. [7], the researchers revealed that 
stress exposure leads to the reduction in hippocampal expression 
of SYP.

Alzaimer and Synaptophysin
Alzheimer disease (AD) as well as other dementing disorders 

are characterized by a continuous loss of neurons in cortical and 
subcortical areas and probably by an extensive synaptic loss [8]. In 
a study by Masliah et al. [8], the researchers has been found that in 
the AD cases an average 50% decrease in the density of the granular 
neuropil immuno reaction in parietal, temporal and mid frontal 
cortex [9]. In addition, other study also reported that average 
synaptophys in level were significantly reduced in hippocampus of 
patients with AD [10].

The significant decrease in synaptophysin immunoreactivity 
found in the AD, might be explained in several ways: (a) as the 
result of a decrease of its synthesis, (b) secondary to increased 
degradation in relation to a primary increase in protease activity, 
(c) secondary to a decreased number of SSV pet synapse, (d) or as a 
direct consequence of synaptic loss preceding or following neuronal 
death [9].

Schizophrenia and Synaptophysin
At the cellular and molecular level, microscopic histopathologic 

studies have demonstrated a reduced neuronal size and decreased 
density of dendritic spines in schizophrenia patient [11,12]. Changes 
in synaptic components may reflect a decrease in cortical volume, 
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and it is believed that such changes may underlie the aberrant 
functional connectivity in schizophrenia [12,13]. For these reasons, 
some synaptic proteins have been utilized as proxy markers of 
synapses to determine whether synaptic alterations are a feature 
of schizophrenia [13,14]. One such synaptic protein repeatedly 
reported in schizophrenia is synaptophysin (SYP) [13]. Several 
studies have been shown that the expression of synaptophysinis 
altered in schizophrenia [15]. As synaptophysin is present in N95% 
of synaptic terminals, immunostaining for this protein is considered 
a reliable measure of synaptic density [16]. Synaptophysin has 
been shown to be critical for regulating neurotransmitter release 
and synaptic plasticity, a process thought to be disrupted in 
schizophrenia [12]. Decreased levels of synaptophysin protein and 
mRNA were observed in several brain regions including the frontal 
cortex, medial temporal lobe, visual association cortex, thalamus, 
cerebellum, and hippocampus of patients with schizophrenia [17-
22].These findings lend support to the notion that SYP disturbance 
in specific brain regions might be part of the pathogenesis of 
schizophrenia [13]. Some studies suggested that reduced levels of 
synaptophysin protein in the schizophrenic cases are may occur by 
posttranscriptional abnormalities of synaptophysin [15].

Diabetes during Pregnancy and Synaptophysin
Diabetes during pregnancy period is one of the most common 

metabolic disorder which can cause significantly increase the risk 
of congenital anomalies in the offspring. The congenital anomalies 
associated with maternal diabetes affect many major organs, 
including central nervous system (CNS) [6,23,24]. There are 
multiple lines of evidence suggesting that the maternal diabetes 
during pregnancy can causes neurostructural and neurofunctional 
abnormalities in the offspring by alteration of many developmental 
events such as neurogenesis, migration, differentiation, and cell 
survival [25,26]. But the precise mechanisms that diabetes in 
pregnancy can affect the development of nervous system are not 
yet understood [27]. In humans, children from diabetic mothers 
may exhibit abnormalities, which include learning defects, motor 
difficulties, attention deficit, and also the risk of developing 
schizophrenia [28-30].

In a recent study by Vafaei Nezhad et al. [3] indicated that the 
gestational diabetes in pregnancy is associated with a significant 
down regulation in hippocampal expression/localization of SYP in 
the neonatal rats at two week after birth [6]. Another recent study 
by Hami et al. [23], they reported that the cerebellar expression of 
SYP was significantly down regulated in at 1  and 2 weeks old of age 
rats. In addition, their results also demonstrated that the localization 
of SYP protein was strikingly reduced in all three distinct layers of 
cerebellar cortex of neonates born to diabetic animals, especially at 
14 day after birth [23].

Discussion
Adequate synapse function is an essential prerequisite of all 

neuronal processing [31]. True connection between neurons is 
fundamental to the physiological function of the nervous system 

[32] and perception, learning, and memory are only possible 
when the nervous system is functioning normally [33]. Some 
studies have demonstrated that neurodegenerative disorder 
can cause, reduce neuronal size and decrease synaptic density 
[17,22,28,30,34]. Since SYP and other synaptic vesicle proteins have 
been implicated in the mechanisms of cellular plasticity underlying 
learning and alternation of them can induced neurostructural and 
neurofunctional abnormalities [6]. In addition, in the previous 
investigations, SYP has also been considered as a reliable marker for 
synaptic density. The early decrease in SYP expression/ localization 
may reflect a down regulation of synaptic function and may be 
related to the reduction in synaptic density [6,23,35]. 

Conclusion
Our results indicated that the reduction of synaptic vesicle 

protein and synaptic density in neurodegenerative disorder may 
can cause the clinical symptoms of this disorders. Since these 
proteins have important functions in vesicle trafficking, duking and 
fusion to the synaptic plasma membrane and in neurotransmitter 
exocytosis. Disruptions in this function could be a reason for the 
structural, behavioral, and cognitive abnormalities observed in this 
patients.
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