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Mini-Review
The current model of the neurodegenerative processes 

involving Alzheimer disease (AD); the amyloid cascade hypothesis, 
maintains that it is oligomeric (consists of a few monomers) soluble 
Aβ that is the key driver of the pathogenic changes found in AD and 
those neurodegenerative changes are facilitated (at least to a certain 
degree) by the changes in tau protein [1-5]. In a recent review by 
Roland Brandt and Lidia Bakota, Department of Neurobiology, 
University of Osnabruck, Osnabruck, Germany, it was illustrated 
that microtubules are directly and indirectly involved in the three 
pathways of the neurodegenerative triad: synaptic impairment, 
dendritic simplification (loss of dendritic spines on the dendrite), 
and neuron cell death [6]. These three hidden connections will be 
briefly reviewed.

Synaptic Impairment
Synaptic impairment associated with the loss of dendritic 

spines, which is correlated with impairment in long-term 
potentiation, appears to be amid the initial events in the AD 
neurodegenerative cascade [6]. Two studies; one using microtubule 
tip-tracking protein EB3 and the second using stable isotope 
labeling to measure the turnover of tubulin, support that abnormal 
functioning in microtubules may directly lead to a loss of dendritic 
spines [7,8]. Dendritic spines are found on many cortical neurons 
and form excitatory synapses. Thus the loss of dendritic spines 
would be associated with a decrease in synaptic strength.

Dendritic Simplification
Microtubule stability may be coupled with the progression 

of dendritic simplification. This is supported by a seminal study 
involving cerebellar Purkinje cells [9]. Subsequent research 
demonstrates two main themes to further support the involvement 
of microtubule stability to the progression of dendritic simplification. 
First, the up-regulation of MAP1A and MAP2 are potentially 
involved in the stability of dendritic microtubules resulting in more 
stabilized branches [10,11]. Secondly, the deletion of MAP1A and 
MAP2 disrupts microtubule spacing which results in decreased 
dendritic arbor complexity (or dendritic branching) [12,13]. Hence,  

 
decreases in dendritic complexity result in less potential excitatory 
synaptic connections.

Cell Death
Cell death that is caused by the disturbance of axonal transport 

may be due, in part, to microtubule disruption. This possibility 
is supported by experimental evidence, using line imaging of 
fluorescent protein-tagged organelles, that demonstrates Aβ 
oligomers interrupt axonal transport [14] and that abnormal 
axonal transport is correlated to microtubule destabilization; which 
may be caused by mitochondrial dysfunction and deficiencies in 
the carriage of brain-derived neurotrophic factor [15,16]. Thus 
defective transport results in the products that are vital to the 
survival of the neuron to not be delivered. This ultimately results 
in cell death and is considered an early pathologic event in AD [14].

Conclusion
Microtubule dynamics are important in AD, as they are involved 

during the early pathological stages seen in AD and also during the 
process of cell death; as they play pivotal roles in axon transport, 
the structural integrity of the neurons, and neuronal plasticity. 
In the review by Brandt and Lidia Bakota [6], it is apparent that 
researchers should not underestimate the role that microtubule 
dynamics may play in AD as it is evident, now, that they are involved 
in various degrees in the three pathways of the neurodegenerative 
triad.
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