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			Abstract

			Synaptophysin (SYP), a hexameric protein consisting of 38-kDa monomers, is a calcium binding glycoprotein found as an integral transmembrane protein in the small synaptic vesicles membrane. It was one of the first proteins to be identified in the synaptic vesicles. Its role in synaptic vesicle fusion and neurotransmitter release has been documented. In addition, it participates in the biogenesis and recycling of synaptic vesicles. In the previous investigations, SYP has also been considered as a reliable marker for synaptic density and synaptogenesis. Regarding several studies, increases in SYP expression have been found to correlate with long-term potentiation, suggesting that the regulation of SYP expression may contribute to the mechanisms underlying learning and memory. Earlier studies on aging and neurodegenerative disorders, such as schizophrenia, parkinson and Alzheimer disease, have correlated change in SYP immune reactivity with loss or increase in synaptic densities.
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			Introduction

			Synaptophysin is an integral membrane glycoprotein of synaptic vesicles, with a molecular weight of 38,000 Da and containing four membrane-spanning domains that it has been proposed both its NH2 and COOH-termini located on the cytoplasmic surface [1-3]. It is a major component of small synaptic vesicles in central and peripheral nervous system and of a population of small vesicles in neuroendocrine cells and it was one of the first proteins to be identified in the synaptic vesicles and accounts for about 7-10 % of total synaptic vesicle proteins [1]. Based on the predicated structure, it was suggested that synaptophysin forms a channel in the synaptic vesicle membrane and acts as the major Ca2+ binding protein in synaptic vesicles, for this reason it is believed to play a critical role in regulating neurotransmitter release. Previous study has been demonstrated that transmitter secretion can be inhibited by anti-synaptophysin antibodies [2,4,5]. 

			Several laboratories have used the marker synaptophysin to quantify the synaptic density and synaptogenesis in neural development and neurodegenerative disease. Earlier studies on aging and neurodegenerative disorders have correlated change in SYP immune reactivity with loss or increase in synaptic densities [6]. In a study by Thome et al. [7], the researchers revealed that stress exposure leads to the reduction in hippocampal expression of SYP.

			Alzaimer and Synaptophysin

			Alzheimer disease (AD) as well as other dementing disorders are characterized by a continuous loss of neurons in cortical and subcortical areas and probably by an extensive synaptic loss [8]. In a study by Masliah et al. [8], the researchers has been found that in the AD cases an average 50% decrease in the density of the granular neuropil immuno reaction in parietal, temporal and mid frontal cortex [9]. In addition, other study also reported that average synaptophys in level were significantly reduced in hippocampus of patients with AD [10].

			The significant decrease in synaptophysin immunoreactivity found in the AD, might be explained in several ways: (a) as the result of a decrease of its synthesis, (b) secondary to increased degradation in relation to a primary increase in protease activity, (c) secondary to a decreased number of SSV pet synapse, (d) or as a direct consequence of synaptic loss preceding or following neuronal death [9].

			Schizophrenia and Synaptophysin

			At the cellular and molecular level, microscopic histopathologic studies have demonstrated a reduced neuronal size and decreased density of dendritic spines in schizophrenia patient [11,12]. Changes in synaptic components may reflect a decrease in cortical volume, and it is believed that such changes may underlie the aberrant functional connectivity in schizophrenia [12,13]. For these reasons, some synaptic proteins have been utilized as proxy markers of synapses to determine whether synaptic alterations are a feature of schizophrenia [13,14]. One such synaptic protein repeatedly reported in schizophrenia is synaptophysin (SYP) [13]. Several studies have been shown that the expression of synaptophysinis altered in schizophrenia [15]. As synaptophysin is present in N95% of synaptic terminals, immunostaining for this protein is considered a reliable measure of synaptic density [16]. Synaptophysin has been shown to be critical for regulating neurotransmitter release and synaptic plasticity, a process thought to be disrupted in schizophrenia [12]. Decreased levels of synaptophysin protein and mRNA were observed in several brain regions including the frontal cortex, medial temporal lobe, visual association cortex, thalamus, cerebellum, and hippocampus of patients with schizophrenia [17-22].These findings lend support to the notion that SYP disturbance in specific brain regions might be part of the pathogenesis of schizophrenia [13]. Some studies suggested that reduced levels of synaptophysin protein in the schizophrenic cases are may occur by posttranscriptional abnormalities of synaptophysin [15].

			Diabetes during Pregnancy and Synaptophysin

			Diabetes during pregnancy period is one of the most common metabolic disorder which can cause significantly increase the risk of congenital anomalies in the offspring. The congenital anomalies associated with maternal diabetes affect many major organs, including central nervous system (CNS) [6,23,24]. There are multiple lines of evidence suggesting that the maternal diabetes during pregnancy can causes neurostructural and neurofunctional abnormalities in the offspring by alteration of many developmental events such as neurogenesis, migration, differentiation, and cell survival [25,26]. But the precise mechanisms that diabetes in pregnancy can affect the development of nervous system are not yet understood [27]. In humans, children from diabetic mothers may exhibit abnormalities, which include learning defects, motor difficulties, attention deficit, and also the risk of developing schizophrenia [28-30].

			In a recent study by Vafaei Nezhad et al. [3] indicated that the gestational diabetes in pregnancy is associated with a significant down regulation in hippocampal expression/localization of SYP in the neonatal rats at two week after birth [6]. Another recent study by Hami et al. [23], they reported that the cerebellar expression of SYP was significantly down regulated in at 1  and 2 weeks old of age rats. In addition, their results also demonstrated that the localization of SYP protein was strikingly reduced in all three distinct layers of cerebellar cortex of neonates born to diabetic animals, especially at 14 day after birth [23].

			Discussion

			Adequate synapse function is an essential prerequisite of all neuronal processing [31]. True connection between neurons is fundamental to the physiological function of the nervous system [32] and perception, learning, and memory are only possible when the nervous system is functioning normally [33]. Some studies have demonstrated that neurodegenerative disorder can cause, reduce neuronal size and decrease synaptic density [17,22,28,30,34]. Since SYP and other synaptic vesicle proteins have been implicated in the mechanisms of cellular plasticity underlying learning and alternation of them can induced neurostructural and neurofunctional abnormalities [6]. In addition, in the previous investigations, SYP has also been considered as a reliable marker for synaptic density. The early decrease in SYP expression/ localization may reflect a down regulation of synaptic function and may be related to the reduction in synaptic density [6,23,35]. 

			Conclusion

			Our results indicated that the reduction of synaptic vesicle protein and synaptic density in neurodegenerative disorder may can cause the clinical symptoms of this disorders. Since these proteins have important functions in vesicle trafficking, duking and fusion to the synaptic plasma membrane and in neurotransmitter exocytosis. Disruptions in this function could be a reason for the structural, behavioral, and cognitive abnormalities observed in this patients.
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