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Abstract
Chemists have traditionally relied on experiments to gather data and analyze it in order to advance their understanding of chemistry. However, 
since the 1960s, computer methods have been developed to assist chemists in this process, leading to the emergence of a new discipline known 
as chemo-informatics. This field has found applications in various areas such as drug discovery, analytical chemistry, and material science. One 
approach that has gained momentum in recent years is the use of artificial intelligence (AI) in chemistry. AI has been employed for tasks such 
as predicting molecular properties, designing new molecules, and validating proposed retrosynthesis and reaction conditions. Its use has led 
to significant progress in drug discovery R&D by reducing costs and time-related problems. Despite these advancements, the concept of AI in 
chemistry remains relatively unexplored. The use of artificial intelligence (AI) in chemistry has experienced significant growth in recent years. 
Both journal and patent publications have seen a substantial increase, particularly since 2015. Analytical chemistry and biochemistry have 
shown the greatest integration of AI, with the highest growth rates. In summary, this review provides a comprehensive overview of how AI has 
progressed in various fields of chemistry and aims to provide insight into its future directions for scholarly audiences..
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Introduction

When I was an undergraduate student, I always had problems 
with the synthesis of chemical compounds! I always wondered 
why we should preserve the method of synthesizing different 
materials somehow! This problem bothered me to the point that, at 
the time when the new generation of smart phones was beginning 
to emerge, it led me to the idea of   finding a way to computerize 
the raw materials of chemical compounds to combine with 
each other and get the desired product. Actually, I was thinking 
of an algorithm! At that time, I still didn’t know anything about 
programming and data science; also, machine learning or artificial 
intelligence had not been so developed. My idea remained sterile 
until I met artificial intelligence; this is the beginning of a new era 
of chemistry!

 
Chemistry in Times of Artificial Intelligence

In 1956, John McCarthy coined the term “artificial intelligence” 
to refer to the branch of computer science concerned with machine 
learning processes that can perform tasks typically requiring 
human intelligence. This involves replicating human intelligence 
in machines, which has become a crucial aspect of the technology 
industry due to its ability to collect and analyze data at low cost 
while ensuring a safe working environment. Artificial intelligence 
has numerous applications, including natural language processing, 
reasoning, and strategic decision-making. It can also modify 
objects based on specific requirements. Artificial intelligence is 
not limited to engineering but also has many applications in the 
chemical field. It is useful for designing molecules and predicting 
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their properties such as melting point, solubility, stability, HOMO/
LUMO levels, and more. Additionally, artificial intelligence aids 
in drug discovery by determining molecular structures and their 
effects on chemicals. This process is time-consuming due to its 
multi-objective nature; however, artificial intelligence can expedite 
it by utilizing previously available datasets. In summary, artificial 
intelligence is a critical component of modern technology that 
enables machines to replicate human intelligence and perform 
complex tasks. Its applications extend beyond engineering into 
fields such as chemistry where it aids in drug discovery and 
molecular design.

This combination allows for the development of advanced 
water treatment systems that are highly efficient and effective in 
removing pollutants from water sources. By using nanotechnology, 
it is possible to create materials with unique properties that 
can selectively remove specific pollutants from water. Artificial 
intelligence can be used to optimize the performance of these 
materials and ensure that they are used in the most effective 
way possible. Furthermore, this technology can also be used to 
monitor water quality in real-time, allowing for early detection 
of potential contamination events. This is particularly important 
in areas where access to clean water is limited or where there 
are concerns about the safety of drinking water. Overall, the 
combination of artificial intelligence and nanotechnology has the 
potential to revolutionize the way we treat and manage our water 
resources. It offers a powerful tool for addressing some of the 
most pressing environmental challenges facing our society today.

Chemistry has experienced a significant increase in data, 
which coincided with the advent of powerful computer technology. 
This allowed for the use of computers to perform mathematical 
operations, such as those required for quantum mechanics, which 
is the foundation of chemistry. This deductive learning approach 
involves using a theory to produce data. However, it was also 
discovered that computers can be used for logical operations 
and software can be developed to process data and information, 
leading to inductive learning. For instance, understanding the 
biological activity of a compound requires knowledge of its 
structure. By analyzing multiple sets of structures and their 
corresponding biological activities, one can generalize and 
gain knowledge about the relationship between structure and 
biological activity. This field is known as chemoinformatics and 
emerged from computer methods developed in the 1960s for 
inductive learning in chemistry.

Initially, methods were developed to represent chemical 
structures and reactions in computer systems. Subsequently, 
chemometrics, a field that combined statistical and pattern 
recognition techniques, was introduced for inductive learning. 
These methods were applied to analyze data from analytical 
chemistry. However, chemists also sought to address complex 
questions such as: 

1. Determining the necessary structure for a desired 
property;

2. Synthesizing the required structure;

3. Predicting the outcome of a reaction. 

To predict properties quantitatively, researchers established 
quantitative structure property/activity relationships (QSPR and 
QSAR). Early efforts were made to develop computer-assisted 
synthesis design tools. Finally, automatic procedures for structure 
elucidation were needed to answer the third question.

Artificial Intelligence

Early on, it was recognized that developing systems for 
predicting properties, designing synthesis, and elucidating 
structures in chemistry would require significant conceptual 
work and advanced computer technology. Consequently, emerging 
methods from computer science were applied to chemistry, 
including those under the umbrella of artificial intelligence. 
Publications such as “Applications of Artificial Intelligence for 
Chemical Inference” emerged from the DENDRAL project at 
Stanford University, which aimed to predict compound structures 
from mass spectra. Despite collaboration between esteemed 
chemists and computer scientists and extensive development 
efforts, the DENDRAL project was eventually discontinued due 
to various reasons, including the waning reputation of artificial 
intelligence in the late 1970s.However, recent years have seen a 
resurgence of artificial intelligence in general and its application 
in chemistry in particular. This is due to several factors such as 
the availability of large amounts of data, increased computing 
power, and new methods for processing data. These methods are 
often referred to as “machine learning,” although there is no clear 
distinction between this term and artificial intelligence.

Databases

Initially, various computer-readable representations of 
chemical structures were explored for processing and building 
databases of chemical structures and reactions. Linear notations 
were preferred due to their conciseness but required a significant 
set of rules for encoding. However, with the rapid development 
of computer technology, storage space became more easily and 
cheaply available, enabling the coding of chemical structures 
in a manner that opened up many possibilities for structure 
processing and manipulation. Eventually, the representation of 
chemical structures by a connection table - lists of atoms and 
bonds - became the norm. This allows for atomic resolution 
representation of structure information and access to each 
bond in a molecule. Despite this shift, one linear code - SMILES 
notation - remains widely used due to its ease of conversion into 
a connection table and suitability for sharing chemical structure 
information online. A molecular structure can be viewed as a 
mathematical graph. To store and retrieve chemical structures 
appropriately, various graph theoretical problems had to be 
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solved such as unique and unambiguous numbering of atoms in 
a molecule, ring perception, tautomer perception, etc. The use of 
connection tables enabled the development of methods for full 
structure, substructure, and similarity searching.

Prediction of Properties

This approach is known as quantitative structure-activity 
relationship (QSAR) modeling. QSAR models have been 
successfully used to predict a wide range of properties, including 
toxicity, bioactivity, and physical properties such as solubility 
and melting point. Another approach to predicting properties is 

through the use of machine learning algorithms. These algorithms 
can analyze large amounts of data and identify patterns that can 
be used to make predictions. Machine learning has been applied 
to a variety of chemical problems, including drug discovery and 
materials design. Overall, the ability to predict chemical properties 
is essential for drug discovery, materials science, and many other 
fields. The development of methods for processing chemical 
structures and building databases has enabled the creation of 
powerful tools for predicting properties and accelerating scientific 
discovery (Figure 1).

Figure 1: This approach is known as Quantitative Structure Property/Activity Relationship (QSPR, QSAR).

This approach is known as Quantitative Structure Property/
Activity Relationship (QSPR, QSAR). Many different methods for 
the calculation of structure descriptors have been developed. 
They represent molecules with increasing detail: 1D, 2D, 3D 
descriptors, representations of molecular surface properties, and 
even taking account of molecular flexibility. Also, quite a variety 
of mathematical methods for modeling the relationship between 
the molecular descriptors and the property of a compound are 
available. These are the inductive learning methods and are 
sometimes subsumed by names like data analysis methods, 
machine learning, or data mining. They comprise methods like 
a simple multi-linear regression analysis, a variety of pattern 
recognition methods, random forests, support vector machines, 
and artificial neural networks. Artificial neural networks (ANN) 
try to model the information processing in the human brain and 
offer much potential for studying chemical data.

 For establishing a relationship between the molecular 
descriptors and the property, values, so-called weights, have to 
be attributed to the connections between the neurons. This is 
most often achieved by the so-called backpropagation algorithm 
by repeatedly presenting pairs of molecular descriptors and their 

properties; these iterations quite often go into the ten-thousands 
and more. An ANN has the advantage that the mathematical 
relationship between the input units and the output need not be 
specified or known; it is implicitly laid down in the weights and 
can also comprise non-linear relationships. It was tempting to 
envisage that with artificial neural networks the field of artificial 
intelligence was awakening again. And in fact, in recent years 
terms like deep learning or deep neural networks have appeared in 
many fields including chemistry that provide a renaissance to the 
domain of artificial intelligence. A deep neural network (observe 
that the network has been rotated by 90 degrees compared to the 
one in Figure 2).

Deep neural networks (DNN) have some quite complex 
architectures with several hidden layers .This has the consequence 
that many weights for the connections have to be determined in 
order to avoid overfitting. Novel approaches and algorithms had 
to be developed to obtain networks that have true predictivity. 
Deep neural networks need a large amount of data for training 
in order to obtain truly predictive models. Most applications of 
DNN have been made in drug design and in analyzing reaction 
data (vide infra).
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Figure 2: Deep neural networks (DNN) have some quite complex architectures with several hidden layers .

Reaction Prediction and Computer-Assisted Synthesis 
Design (CASD)

These new systems use machine learning algorithms 
and deep neural networks to predict reactions and suggest 
synthesis pathways. The accuracy of these systems has improved 
significantly, with some achieving success rates of over 90% in 
predicting reactions and suggesting synthetic routes. Such systems 
have the potential to revolutionize the field of organic synthesis by 
enabling chemists to design new molecules and synthesize them 
more efficiently. However, there are still challenges to overcome, 
such as the need for more comprehensive reaction databases 
and the development of more accurate machine learning models. 
Nonetheless, the progress made in recent years suggests that 
computer-assisted synthesis design will become an increasingly 
important tool for organic chemists in the future.

 The development of computer-assisted synthesis design 
(CASD) systems has been hindered until recently due to limited 
reaction databases and search procedures. However, with the 
availability of large reaction databases and novel data processing 
algorithms, CASD systems have been developed using machine 
learning algorithms and deep neural networks to predict 
reactions and suggest synthesis pathways. These systems have 
achieved high success rates in predicting reactions and suggesting 
synthetic routes, with the potential to revolutionize organic 
synthesis. Nonetheless, challenges remain, such as the need for 
more comprehensive reaction databases and more accurate 
machine learning models. Methods for calculating values for 
concepts like synthetic accessibility or current complexity have 
also been developed to assist chemists in selecting molecules for 
further investigation. The combination of large reaction databases 
with novel data processing algorithms has matured CASD systems, 
making them a valuable tool for organic chemists in planning 
laboratory work.

Computer-assisted synthesis design (CASD) systems have 
recently emerged as a valuable tool for organic chemists, facilitated 
by the availability of large reaction databases and novel data 
processing algorithms. Machine learning algorithms and deep 
neural networks have been used to predict reactions and suggest 
synthesis pathways, achieving high success rates. However, 
challenges remain, such as the need for more comprehensive 
reaction databases and more accurate machine learning models. 
Methods for calculating values for concepts like synthetic 
accessibility or current complexity have also been developed to 
assist chemists in selecting molecules for further investigation. 
The combination of large reaction databases with novel data 
processing algorithms has matured CASD systems, making them a 
promising tool for planning laboratory work. In addition, the use 
of bioinformatics and chemoinformatics methods in combination 
has led to interesting insights in the study of biochemical pathways, 
including the identification of major pathways for periodontal 
disease and the derivation of flavor-forming pathways in cheese 
by lactic acid bacteria. Finally, novel artificial intelligence methods 
such as deep learning architectures are being applied to metabolic 
pathway prediction, offering exciting possibilities for pathway 
redesign.

Cosmetics Products Discovery

In recent years, chemoinformatics and bioinformatics 
methods that have established their value in drug discovery 
such as molecular modeling, structure-based design, molecular 
dynamics simulations and gene expression have also been utilized 
in the development of new cosmetics products. Thus, novel skin 
moisturizers and anti-aging compounds have been developed. 
Legislation has been passed in the European Union with the 
Cosmetics Directive that no chemicals are longer allowed to be 
added to cosmetics products that have been tested on animals. 
This has given a large push to the establishment of computer 
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models for the prediction of toxicity of chemicals to be potentially 
included in cosmetics products.

Material Science

The prediction of the properties of materials is probably 
the most active area of chemoinformatics. The properties 
that are investigated range from properties of nanomaterials, 
materials from regenerative medicine, solar cells, homogeneous 
or heterogeneous catalysts, electrocatalysts, phase diagrams, 
ceramics, or the properties of supercritical solvents. Reviews 
have appeared. In most cases, the chemical structure of the 
material investigated is not known and therefore other types of 
descriptors have to be chosen to represent a material for a QSAR 
study. Materials could be represented by physical properties such 
as refractive index or melting point, spectra, the components 
or the conditions for the production of the material, etc. Use of 
chemoinformatics methods in material science are particularly 
opportune as in most cases the properties of interest depend 
on many parameters and cannot be directly calculated. A QSAR 
model would allow the design of new materials with the desired 

property.

Process Control

The problem of the detection of faults in chemical processes 
and process control have benefited quite early on from the 
application of artificial neural networks. An overall course on 
the application of artificial intelligence in process control has 
been developed by six European universities. Chemical processes 
rapidly generate a host of data on flow of chemicals, concentration, 
temperature, pressure, product distribution, etc. This data have to 
be used to recognize potential faults in the process and rapidly 
bring the process back to optimum. The relationships between 
the various data produced by sensors and the amount of desired 
product cannot be explicitly given, making it an ideal case for 
the application of powerful data modeling techniques. Quite a 
few excellent results have been obtained for such processes as 
Petrochemical or pharmaceutical processes, water treatment, 
agriculture, iron manufacture, exhaust gas denitration, distillation 
column operation, etc. (Figure 3).

Figure 3: The standard flow path of ML, from data production to classification or inference.

Identification of Compounds with Genetic Algorithms

Bio-inspired computing involves the development of 
procedures that mimic mechanisms observed in natural 
environments. For example, genetic algorithms are inspired by 
Charles Darwin’s concept of evolution and use the principle of 
“survival of the fittest” to facilitate optimization. In this process, 
active compounds interbreed and mutate to produce new 
compounds with new properties. Compounds that show useful 
properties are selected for further synthesis, while those that do 
not have useful properties are ignored. After several generations, 
new functional compounds appear with inherited and acquired 

properties. This process requires accurate composition modeling, 
appropriate mutation methods, and robust fitness assessments 
that can be obtained computationally, reducing the need for 
expensive experiments. In genetic algorithms, each compositional 
or structural feature of a compound is considered a gene. Chemical 
genes include factors such as individual components, polymer 
block size, monomer compositions, and processing temperature. 
Genome contains all the genes of a combination, and the resulting 
properties are known as phenotypes. Genetic algorithms scan 
the search space of gene domains to identify the most suitable 
phenotypes based on a fitness function. The relationship between 
genome and phenotype creates a fitness perspective, as shown in 
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the figure below for two hypothetical genes related to polymer 
synthesis processes aimed at high hardening rates. The fitness 
perspective is implicit in the problem model defined by gene 
domains and fitness function. 

The genetic algorithm moves along the landscape generating 
new combinations while avoiding combinations that do not 
improve fitness. This mechanism increases the probability of 
achieving the desired properties. Bio-inspired computing involves 
mimicking natural mechanisms to develop optimization methods. 
Genetic algorithms, inspired by Charles Darwin’s concept of 
evolution, use the principle of “survival of the fittest” to create new 

combinations with new characteristics. Each trait is considered a 
combination of a gene, and the genome includes all the genes of 
a combination, resulting in a phenotype. Genetic algorithms scan 
the search space of gene domains to identify the most suitable 
phenotypes based on a fitness function. The relationship between 
genome and phenotype creates a fitness landscape that is implicit 
in the problem model defined by gene domains and fitness 
functions. This mechanism increases the probability of achieving 
the desired properties. The effectiveness of genetic algorithms has 
been shown in various fields, including catalyst optimization and 
material science (Figure 4).

Figure 4: A fitness landscape considering two hypothetical genes as, for example, block size and processing temperature of a polymer 
synthesis. Fitness could be hardness, for instance. The landscape contains local maxima, a global maximum, and a global minimum. In red, 
the path of a genetic algorithm along 11 iterations.

Synthesis Prediction Using ML

The challenging task of synthesizing new compounds, 
particularly in organic chemistry, has led to the search for 
machine-based methods that can predict the molecules produced 
from a given set of reactants and reagents. Corey and Wipke’s 1969 
approach used templates produced by expert chemists to define 
atom connectivity rearrangement under specific conditions. 
However, limited template sets prevented their method from 
encompassing a wide range of conditions. The use of templates or 
rules to transfer knowledge from human experts to computers has 
gained renewed interest due to the potential for automatic rule 
generation using big datasets, as seen in medicine and materials 
science. Machine learning methods, such as neural networks, 
have been successful in predicting retrosynthesis outcomes using 
large datasets. Deep learning appears to be the most promising 

approach for exploring large search spaces. Recent experiments 
using link prediction ML algorithms on a knowledge graph built 
from millions of binary reactions have shown high accuracy in 
predicting products and detecting unlikely reactions (Figure 5).

The Corresponding Template Includes the Reaction 
Center and Nearby Functional Groups

Reproduced from the search for machine-based methods to 
predict the molecules produced from a given set of reactants and 
reagents in organic chemistry has led to the use of templates and 
rules to transfer knowledge from human experts to computers. 
However, limited template sets have prevented these methods from 
encompassing a wide range of conditions. Recent experiments 
using machine learning (ML) methods, such as neural networks 
and deep learning (DL), have shown high accuracy in predicting 
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products and detecting unlikely reactions. DL appears to be the 
most promising approach for exploring large search spaces 
and has been used to predict outcomes of chemical reactions 
by assimilating latent patterns for generalizing out of a pool of 
examples. The SMILES chemical language has been employed 
in DL models to represent molecular structures as graphs and 
strings amenable to computational processing. DNNs have been 
used to predict reactions with superior performance compared 

to previous rule-based expert systems, achieving an accuracy of 
97% on a validation set of 1 million reactions. Additionally, DNNs 
have been used to map discrete molecules into a continuous 
multidimensional space, where it is possible to predict properties 
of existing vectors and predict new vectors with certain properties. 
Optimization techniques can then be employed to search for the 
best candidate molecules.

Figure 5: Example of a reaction and its corresponding reaction template. The reaction is centered in the green-highlighted areas.

Learning from data has always been a cornerstone of chemical 
research. In the last sixty years computer methods have been 
introduced in chemistry to convert data into information and 
then derive knowledge from this information. This has led to 
the establishment of the field of chemoinformatics that has 
undergone impressive developments over the last 60 years and 
found applications in most areas of chemistry from drug design to 
material science. Artificial intelligence techniques have recently 
seen a rebirth in chemistry and will have to be optimized to also 
allow us to understand the basic foundations of chemical data. 
This review examines the growth and distribution of AI-related 
chemistry publications over the past two decades using the CAS 
Content Collection. 

The volume of journal and patent publications has increased 
significantly, particularly since 2015. Analytical chemistry and 
biochemistry have integrated AI to the greatest extent and with 
the highest growth rates. Interdisciplinary research trends were 
also identified, along with emerging associations of AI with 
certain chemistry research topics. Notable publications in various 
chemistry disciplines were evaluated to highlight emerging use 

cases. The occurrence of different classes of substances and their 
roles in AI-related chemistry research were quantified, detailing the 
popularity of AI adoption in life sciences and analytical chemistry. 
AI can be applied to various tasks in chemistry, where complex 
relationships are often present in data sets. AI implementations 
have dramatically reduced design and experimental effort by 
enabling laboratory automation, predicting bioactivities of new 
drugs, optimizing reaction conditions, and suggesting synthetic 
routes to complex target molecules. This review contextualizes 
the current AI landscape in chemistry, providing an understanding 
of its future directions (Figure 6).

This review analyzes the growth and distribution of AI-
related chemistry publications over the past two decades using 
the CAS content collection. The volume of journal publications 
and patents has increased significantly since 2015 in particular, 
as analytical chemistry and biochemistry have integrated artificial 
intelligence with the largest amount and the highest growth rate. 
Interdisciplinary research trends were identified, along with 
emerging connections of artificial intelligence to specific chemistry 
research topics. Significant publications in various chemistry 
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disciplines were evaluated to highlight emerging applications. The 
popularity of artificial intelligence adoption in life sciences and 
analytical chemistry was determined by examining the occurrence 
of different classes of materials and their role in artificial 
intelligence-related chemistry research. Artificial intelligence has 
reduced experimental design and effort by enabling laboratory 
automation, predicting the bioactivities of new drugs, optimizing 
reaction conditions, and suggesting synthetic routes to complex 
target molecules. This review examines the current landscape 
of artificial intelligence in chemistry and provides insight into 
its future directions. The CAS content corpus was searched to 

identify publications related to artificial intelligence from 2000 
to 2020 based on various artificial intelligence terms in the title, 
keywords, abstract text, and concepts selected by CAS experts. 
Approximately 70,000 journal publications and 17,500 patents 
from the CAS content collection were identified as related to 
AI. The number of journal publications and patents increased 
over time and showed similar fast-growing trends after 2015. 
The proportion of research related to artificial intelligence is 
increasing, indicating an absolute increase in research efforts for 
artificial intelligence in chemistry.

Figure 6: Annual publication volume in AI-related chemistry from 2000 to 2020: (A) Journal publications, (B) patent publications, and (C) 
ACS National Meeting abstracts.

This review analyzes the growth and distribution of AI-related 
chemistry publications over the past two decades using the CAS 
Content Collection. The volume of journal and patent publications 
has significantly increased, especially since 2015, with analytical 
chemistry and biochemistry integrating AI to the greatest extent 
and with the highest growth rates. Interdisciplinary research 
trends were identified, along with emerging associations of AI with 
specific chemistry research topics. Notable publications in various 
chemistry disciplines were evaluated to highlight emerging use 
cases. The popularity of AI adoption in life sciences and analytical 
chemistry was quantified by examining the occurrence of different 
classes of substances and their roles in AI-related chemistry 
research. AI has reduced design and experimental effort by 
enabling laboratory automation, predicting bioactivities of new 
drugs, optimizing reaction conditions, and suggesting synthetic 
routes to complex target molecules. This review contextualizes the 
current AI landscape in chemistry and provides an understanding 
of its future directions. The CAS Content Collection was searched 

to identify AI-related publications from 2000 to 2020 based on 
various AI terms in their title, keywords, abstract text, and CAS 
expert-curated concepts. Roughly 70,000 journal publications and 
17,500 patents from the CAS Content Collection were identified as 
related to AI. The numbers of both journal and patent publications 
increased with time, showing similar rapidly growing trends 
after 2015. The proportion of AI-related research is increasing, 
suggesting an absolute increase in research effort toward AI in 
chemistry (Figure 7).

Here, the growth and distribution of AI-related chemistry 
publications over the past two decades is reviewed using the CAS 
content collection. The volume of journal publications and patents 
has increased significantly, especially since 2015, with analytical 
chemistry and biochemistry incorporating AI the most and 
with the highest growth rates. Interdisciplinary research trends 
were identified, along with emerging connections of artificial 
intelligence to specific chemistry research topics. Significant 

http://dx.doi.org/10.19080/RAPSCI.2023.07.555725


How to cite this article: Pourya Z. The Role of ‘’Artificial Intelligence’’ in Chemistry Examining the Strategy of ‘’Glaser’s Choice Theory’’ and ‘’Game Theory’’ in How 
to Synthesize Chemical Compounds. Recent Adv Petrochem Sci. 2023; 7(5): 555725. DOI:  10.19080 RAPSCI.2023.07.555725009

Recent Advances in Petrochemical Science

publications in various chemistry disciplines were evaluated 
to highlight emerging applications. The popularity of artificial 
intelligence adoption in life sciences and analytical chemistry was 
determined by examining the occurrence of different classes of 
materials and their role in artificial intelligence-related chemistry 
research. Artificial intelligence has reduced experimental design 
and effort by enabling laboratory automation, predicting the 
bioactivities of new drugs, optimizing reaction conditions, and 
suggesting synthetic routes to complex target molecules. This 
review examines the current landscape of artificial intelligence 
in chemistry and provides insight into its future directions. 
Then the countries/regions and organizations of origin of AI-

related chemistry documents were extracted to determine their 
distribution. China and the United States had the highest number 
of publications for both journal articles and patents. Medical 
diagnostics developers and technology companies make up a 
large portion of commercial licensees for chemical AI research. 
Publication trends in specific research areas were also analyzed, 
and analytical chemistry had the highest normalized volume in 
recent years. Energy technology and environmental chemistry 
and industrial chemistry and chemical engineering are also 
growing fields in terms of research related to artificial intelligence. 
Biochemistry is heavily featured in AI-related patent publications, 
likely due to its use in drug research and development.

Figure 7: Distribution of AI-related publications by country/region and company from 2000 to 2020.
A. Top 20 countries/regions in number of journal publications.
B. Top 20 countries/regions in number of patent publications.
C. Top 20 companies in number of patent publications.

This article examines the growth and distribution of AI-related 
chemistry publications using the CAS Content Collection over the 
past two decades. The volume of journal and patent publications 
has significantly increased, particularly since 2015, with analytical 
chemistry and biochemistry integrating AI to the greatest extent 
and with the highest growth rates. Interdisciplinary research 
trends were identified, along with emerging associations of AI with 
specific chemistry research topics. Notable publications in various 
chemistry disciplines were evaluated to highlight emerging use 
cases. The popularity of AI adoption in life sciences and analytical 
chemistry was quantified by examining the occurrence of different 
classes of substances and their roles in AI-related chemistry 
research. AI has reduced design and experimental effort by 
enabling laboratory automation, predicting bioactivities of new 

drugs, optimizing reaction conditions, and suggesting synthetic 
routes to complex target molecules. 

This review contextualizes the current AI landscape in 
chemistry and provides an understanding of its future directions. 
The countries/regions and organizations of origin for AI-related 
chemistry documents were then extracted to determine their 
distributions. China and the United States contributed the largest 
numbers of publications for both journal articles and patents. 
Medical diagnostic developers and technology companies make 
up a large portion of the commercial patent assignees for AI 
chemical research. Trends of publications in specific research 
areas were also analyzed, with Analytical Chemistry having the 
highest normalized volume in recent years. Energy Technology 
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and Environmental Chemistry and Industrial Chemistry and 
Chemical Engineering are also growing fields in terms of AI-
related research. Biochemistry is highly represented in AI-related 
patent publications, possibly due to its use in drug research and 

development. Interdisciplinary relationships do appear in AI-
related chemistry research, demonstrating how AI can be applied 
in research areas where the relationships between available data 
in separate domains are not obvious to researchers (Figure 8).

Figure 8: The number of documents for each type of material has increased during this period, with Small Molecule, Element and Manual 
Registration materials showing the greatest increase. These results are consistent with those.

Figure 9: Publications in AI-related chemistry associated with substance class from 2000 to 2020.
A. Number of AI-related journal publications & number of substances associated with each class.
B. Trends of AI-related journal publications associated with each substance class.
C. Number of AI-related patent publications and number of substances associated with each class.
D. Trends of AI-related patent publications associated with each substance class.
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Difference in proportion of total AI-related publications and 
control group (non-AI related) by interdisciplinary pair: (A) 
journal publications and (B) patent publications. The distribution 
of AI-related research in chemistry can be analyzed by examining 
the number of papers related to different classes of materials. 
Overcoming challenges in material representation and data 
availability is critical to implementing artificial intelligence in 
chemistry. Therefore, identifying the most common types of 
materials studied in the literature can indicate areas where 
researchers have successfully addressed these challenges. 
CAS classifies materials into several classes, and the figure 
below shows the number of AI-related journal publications for 
common material classes, including alloy, coordinated compound, 
element, hand register, ring parent, small molecule, polymer, 
salt, and inorganic compound. Gives. Publications containing 
Small Molecule materials have the largest number, followed 
by publications containing Element and Manual Registration 
materials. This trend is probably due to the relative simplicity and 
ease of modeling of these materials compared to Coordination 
Compound and Polymer. The high number of documents containing 
manual recording material corresponds to the high volume of 
publications in biochemistry. The figure below also shows the 
total number of materials in AI-related journal publications for 
each material class. The process in substance counting is similar 
to document counting, although skewed by the higher number of 
small molecule substances in each document (Figure 9).

The popularity of AI applications in chemistry has grown 
rapidly in recent years, with some fields further along in adoption 
than others. The success of AI implementation is linked to the 
availability and quality of data, as well as opportunities for gaining 
insights and automating repetitive tasks. Analytical chemistry 
and biochemistry have seen significant AI deployment due to the 
availability of large training sets and data for macromolecules. 
The popularity of AI applications in drug discovery is reflected in 
the large number of publications involving small molecules. The 
increased availability of software and hardware tools, research 
area-specific data sets, and researcher expertise have contributed 
to the growth of AI in chemistry. While AI has been successfully 
adapted to many areas of chemical research, there are still areas 
where its impact has yet to be felt. With continued improvements 
in AI and interdisciplinary research, these areas may see increased 
adoption in the future

Glasser’s Choice Theory

Choice theory posits that the behaviors we choose are 
central to our existence. Our behavior (choices) is driven by 
five genetically driven needs in hierarchical order: survival, 
love, power, freedom, and fun. The most basic human needs are 
survival (physical component) and love (mental component). 
Without physical (nurturing) and emotional (love), an infant will 
not survive to attain power, freedom, and fun.

“No matter how well-nourished and intellectually stimulated 
a child is, going without human touch can stunt his mental, 

emotional, and even physical growth”.

Choice theory suggests the existence of a “quality world.” The 
idea of a “quality world” in choice theory has been compared 
to Jungian archetypes, but Glasser’s acknowledgement of this 
connection is unclear. Some argue that Glasser’s “quality world” 
and what Jung would call healthy archetypes share similarities. 
Our “quality world” images are our role models of an individual’s 
“perfect” world of parents, relations, possessions, beliefs, etc. How 
each person’s “quality world” is somewhat unusual, even in the 
same family of origin, is taken for granted.

Starting from birth and continuing throughout our lives, each 
person places significant role models, significant possessions, 
and significant systems of belief (religion, cultural values, icons, 
etc.) into a mostly unconscious framework Glasser called our 
“quality world”. The issue of negative role models and stereotypes 
is not extensively discussed in choice theory. Glasser also 
posits a “comparing place,” where we compare and contrast 
our perceptions of people, places, and things immediately in 
front of us against our ideal images (archetypes) of these in our 
Quality World framework. Our subconscious pushes us towards 
calibrating-as best we can-our real-world experience with our 
quality world (archetypes). Behavior (“total behavior” in Glasser’s 
terms) is made up of these four components: acting, thinking, 
feeling, and physiology. Glasser suggests we have considerable 
control or choice over the first two of these, yet little ability to 
directly choose the latter two as they are more deeply sub- and 
unconscious. These four components remain closely intertwined, 
and the choices we make in our thinking and acting will greatly 
affect our feelings and physiology.

Glasser frequently emphasizes that failed or strained 
relationships with significant individuals can contribute to 
personal unhappiness. Spouses, parents, children, friends, and 
colleagues. The symptoms of unhappiness are widely variable 
and are often seen as mental illnesses. Glasser believed that 
“pleasure” and “happiness” are related but far from synonymous. 
Sex, for example, is a “pleasure” but may well be divorced from 
a “satisfactory relationship,” which is a precondition for lasting 
“happiness” in life. Hence the intense focus on the improvement 
of relationships in counseling with choice theory-the “new reality 
therapy”. Individuals who are familiar with both reality therapy 
and choice theory may have a preference for the latter, which 
is considered a more modern approach. According to choice 
theory, mental illness can be linked to personal unhappiness. 
Glasser champions how we are able to learn and choose alternate 
behaviors that result in greater personal satisfaction. Reality 
therapy is a choice theory-based counseling process focused on 
helping clients learn to make those self-optimizing choices [1].

The Ten Axioms of Choice

a. The only person whose behavior we can control is 
ourselves.

b. All we can give another person is information.
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c. All long-lasting psychological problems are relationship 
problems.

d. The problem relationship is always part of our present 
life.

e. What happened in the past has everything to do with 
who we are today, but we can only satisfy our basic needs right 
now and plan to continue satisfying them in the future.

f. We can only satisfy our needs by satisfying the pictures 
in our quality world.

g. All we do is behave.

h. All behavior is total behavior and is made up of four 
components: acting, thinking, feeling, and physiology.

i. All of our total behavior is chosen, but we only have 
direct control over the acting and thinking components. We can 
only control our feelings and physiology indirectly through how 
we choose to act and think.

j. All total behavior is designated by verbs and named by 
the part that is the most recognizable.

In Classroom Management

William Glasser’s choice theory begins: Behavior is not 
separate from choice; we all choose how to behave at any time. 
Second, we cannot control anyone’s behavior but our own. Glasser 
emphasized the importance of classroom meetings as a means to 
improve communication and solve classroom problems. Glasser 
suggested that teachers should assist students in envisioning a 
fulfilling school experience and planning the choices that would 
enable them to achieve it. For example, Johnny Waits is an 
18-year-old high school senior and plans on attending college to 
become a computer programmer. Glasser suggests that Johnny 
could be learning as much as he can about computers instead 
of reading Plato. Glasser proposed a curriculum approach that 
emphasizes practical, real-world topics chosen by students based 
on their interests and inclinations. This approach is referred to as 
the quality curriculum. The quality curriculum places particular 
emphasis on topics that have practical career applications. 
According to Glasser’s approach, teachers facilitate discussions 
with students to identify topics they are interested in exploring 
further when introducing new material. In line with Glasser’s 
approach, students are expected to articulate the practical value 
of the material they choose to explore[2].

Education

Glasser did not endorse Summerhill, and the quality schools 
he oversaw typically had conventional curriculum topics. The 
main innovation of these schools was a deeper, more humanistic 
approach to the group process between teachers, students, and 
learning.

Critiques

In a book review, [3] Christopher White writes that Glasser 
believes everything in the DSM-IV-TR is a result of an individual’s 
brain creatively expressing its unhappiness. White also notes 
that Glasser criticizes the psychiatric profession and questions 
the effectiveness of medications in treating mental illness. White 
points out that the book does not provide a set of randomized 
clinical trials demonstrating the success of Glasser’s teachings.

Quality of World

The Quality Realm is central to William Glasser’s views. A 
person’s values and priorities are represented in the brain as 
mental images in a space called the Superior Realm. Photographs 
of significant people, locations, ideas, and convictions could be 
filed away in their minds. According to Glasser, the pictures in a 
human’s Supreme bring them joy and fulfill some fundamental 
needs. Such images are personal and not subject to any societal 
norm checking. The Quality Planet is our ideal utopia.

Working of Glasser’s Choice Theory

Clients’ emotions and physiological reactions to stress may 
be improved via habitual and cognitive modification instruction. 
The educational field is a perfect illustration of this. Disappointed 
pupils who are unable to master particular ideas as well as acquire 
particular talents may be instructed to rethink what they consider 
a high-quality universe. Some changes can be implemented to 
emphasize the company’s history of problematic habits and 
encourage them to identify and address the underlying causes of 
that habit to prevent a recurrence. An essay on Schema Therapy 
states that both Theory and its subset, Reality Psychotherapy, do 
not focus on the past. Customers are urged to live in the now. They 
encourage people to consider alterations to their routine that 
could bring about more satisfying outcomes.

Conclusion of session Glasser’s Choice Theory 

Glasser’s original version of the Choice Theory posits that 
at our most fundamental level, choices are made to satisfy a set 
of requirements. It is hypothesized that people want to choose 
the option they believe would be best for them, which does not 
imply that bad judgments will not have negative results. It has 
been shown, meanwhile, that Psychodynamic Approach may aid 
individuals in developing more effective approaches to managing 
issues. Choice Theory originates in traditional habits and has 
contributed greatly too many academic disciplines.

Game Theory

Game theory is the study of mathematical models of strategic 
interactions among rational agents. [1]It has applications in 
all fields of social science, as well as in logic, systems science 
and computer science. The concepts of game theory are used 
extensively in economics as well. [2] The traditional methods of 
game theory addressed two-person zero-sum games, in which 
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each participant’s gains or losses are exactly balanced by the losses 
and gains of other participants. In the 21st century, the advanced 
game theories apply to a wider range of behavioral relations; it is 
now an umbrella term for the science of logical decision making in 
humans, animals, as well as computers.

Modern game theory began with the idea of mixed-strategy 
equilibria in two-person zero-sum game and its proof by John 
von Neumann. Von Neumann’s original proof used the Brouwer 
fixed-point theorem on continuous mappings into compact 
convex sets, which became a standard method in game theory 
and mathematical economics. His paper was followed by the 
1944 book Theory of Games and Economic Behavior, co-written 
with Oskar Morgenstern, which considered cooperative games of 
several players. [3] The second edition of this book provided an 
axiomatic theory of expected utility, which allowed mathematical 
statisticians and economists to treat decision-making under 
uncertainty. Therefore, it is evident that game theory has evolved 
over time with consistent efforts of mathematicians, economists 
and other academicians. Game theory was developed extensively 
in the 1950s by many scholars. It was explicitly applied to 
evolution in the 1970s, although similar developments go back at 
least as far as the 1930s. Game theory has been widely recognized 
as an important tool in many fields. As of 2020, with the Nobel 
Memorial Prize in Economic Sciences going to game theorists Paul 
Milgrom and Robert B. Wilson, fifteen game theorists have won 
the economics Nobel Prize. John Maynard Smith was awarded the 
Crafoord Prize for his application of evolutionary game theory [4-
12].

Different types of Games

Cooperative / Non-Cooperative

A game is cooperative if the players are able to form binding 
commitments externally enforced (e.g. through contract law). 
A game is non-cooperative if players cannot form alliances or if 
all agreements need to be self-enforcing (e.g., through credible 
threats). [13] Cooperative games are often analyzed through 
the framework of cooperative game theory, which focuses on 
predicting which coalitions will form, the joint actions that 
groups take, and the resulting collective payoffs. It is opposed to 
the traditional non-cooperative game theory which focuses on 
predicting individual players’ actions and payoffs and analyzing 
Nash equilibria.[14,15] The focus on individual payoff can result 
in a phenomenon known as Tragedy of the Commons, where 
resources are used to a collectively inefficient level. The lack of 
formal negotiation leads to the deterioration of public goods 
through over-use and under provision that stems from private 
incentives. [16]Cooperative game theory provides a high-level 
approach as it describes only the structure, strategies, and payoffs 
of coalitions, whereas non-cooperative game theory also looks at 
how bargaining procedures will affect the distribution of payoffs 
within each coalition.

 As non-cooperative game theory is more general, cooperative 
games can be analyzed through the approach of non-cooperative 
game theory (the converse does not hold) provided that sufficient 
assumptions are made to encompass all the possible strategies 
available to players due to the possibility of external enforcement 
of cooperation. While using a single theory may be desirable, in 
many instances insufficient information is available to accurately 
model the formal procedures available during the strategic 
bargaining process, or the resulting model would be too complex 
to offer a practical tool in the real world. In such cases, cooperative 
game theory provides a simplified approach that allows analysis 
of the game at large without having to make any assumption about 
bargaining powers.

Symmetric / Asymmetric

A symmetric game is a game where the payoffs for playing a 
particular strategy depend only on the other strategies employed, 
not on who is playing them. That is, if the identities of the players 
can be changed without changing the payoff to the strategies, 
then a game is symmetric. Many of the commonly studied 2×2 
games are symmetric. The standard representations of chicken, 
the prisoner’s dilemma, and the stag hunt are all symmetric 
games. Some scholars would consider certain asymmetric 
games as examples of these games as well. However, the most 
common payoffs for each of these games are symmetric. The most 
commonly studied asymmetric games are games where there 
are not identical strategy sets for both players. For instance, the 
ultimatum game and similarly the dictator game have different 
strategies for each player. It is possible, however, for a game to 
have identical strategies for both players yet be asymmetric. For 
example, the game pictured in this section’s graphic is asymmetric 
despite having identical strategy sets for both players (Table 1).

Table 1: An asymmetric game.

 E F

E 1, 2 0, 0

F 0, 0 1, 2

Zero-Sum / Non-Zero-Sum

Zero-sum games (more generally, constant-sum games) 
are games in which choices by players can neither increase nor 
decrease the available resources. In zero-sum games, the total 
benefit goes to all players in a game, for every combination of 
strategies, always adds to zero (more informally, a player benefits 
only at the equal expense of others). [17] Poker exemplifies a 
zero-sum game (ignoring the possibility of the house’s cut), 
because one wins exactly the amount one’s opponents lose. Other 
zero-sum games include matching pennies and most classical 
board games include Go and chess (Table 2).Many games studied 
by game theorists (including the famed prisoner’s dilemma) are 
non-zero-sum games, because the outcome has net results greater 
or less than zero. Informally, in non-zero-sum games, a gain by one 
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player does not necessarily correspond with a loss by another. 
Constant-sum games correspond to activities like theft and 
gambling, but not to the fundamental economic situation in which 
there are potential gains from trade. It is possible to transform any 
constant-sum game into a (possibly asymmetric) zero-sum game 
by adding a dummy player (often called “the board”) whose losses 
compensate the players’ net winnings.

Table 2: A zero-sum game.

 A B

A -1, 1 3, -3

B 0, 0 -2, 2

Simultaneous / Sequential

Simultaneous games are games where both players move 
simultaneously, or instead the later players are unaware of the 
earlier players’ actions (making them effectively simultaneous). 
Sequential games (or dynamic games) are games where players 
do not make decisions simultaneously, and the player’s earlier 
actions affect the outcome and decisions of other players. [18] 
This need not be perfect information about every action of earlier 
players; it might be very little knowledge. For instance, a player 
may know that an earlier player did not perform one particular 
action, while they do not know which of the other available actions 
the first player actually performed. The difference between 
simultaneous and sequential games is captured in the different 
representations discussed above. Often, normal form is used to 
represent simultaneous games, while extensive form is used to 
represent sequential ones. The transformation of extensive to 
normal form is one way, meaning that multiple extensive form 
games correspond to the same normal form. Consequently, 
notions of equilibrium for simultaneous games are insufficient for 
reasoning about sequential games.

Perfect Information and Imperfect Information

A game of imperfect information. The dotted line represents 
ignorance on the part of player 2, formally called an information 
set. An important subset of sequential games consists of games 
of perfect information. A game with perfect information means 
that all players, at every move in the game, know the previous 
history of the game and the moves previously made by all other 
players. In reality, this can be applied to firms and consumers 
having information about the price and quality of all the available 
goods in a market. [19] An imperfect information game is played 
when the players do not know all moves already made by the 
opponent such as a simultaneous move game.[20] Most games 
studied in game theory are imperfect-information games.[citation 
needed] Examples of perfect-information games include tic-tac-
toe, checkers, chess, and go [21-23]. Many card games are games 
of imperfect information, such as poker and bridge.[24] Perfect 
information is often confused with complete information, which 
is a similar concept pertaining to the common knowledge of each 

player’s sequence, strategies, and payoffs throughout gameplay.
[25] Complete information requires that every player know 
the strategies and payoffs available to the other players but not 
necessarily the actions taken, whereas perfect information is 
knowledge of all aspects of the game and players.[26] Games of 
incomplete information can be reduced, however, to games of 
imperfect information by introducing “moves by nature”.[27]

Bayesian Game 

One of the assumptions of the Nash equilibrium is that every 
player has correct beliefs about the actions of the other players. 
However, there are many situations in game theory where 
participants do not fully understand the characteristics of their 
opponents. Negotiators may be unaware of their opponent’s 
valuation of the object of negotiation, companies may be unaware 
of their opponent’s cost functions, combatants may be unaware 
of their opponent’s strengths, and jurors may be unaware of 
their colleague’s interpretation of the evidence at trial. In some 
cases, participants may know the character of their opponent 
well, but may not know how well their opponent knows his or 
her own character. Bayesian game means a strategic game with 
incomplete information. For a strategic game, decision makers are 
players, and every player has a group of actions. A core part of the 
imperfect information specification is the set of states. Every state 
completely describes a collection of characteristics relevant to the 
player such as their preferences and details about them. There 
must be a state for every set of features that some players believe 
may exist.

Example of a Bayesian game

For example, where Player 1 is unsure whether Player 2 would 
rather date her or get away from her, while Player 2 understands 
Player 1’s preferences as before. To be specific, supposing 
that Player 1 believes that Player 2 wants to date her under a 
probability of 1/2 and get away from her under a probability of 
1/2 (this evaluation comes from Player 1’s experience probably: 
she faces players who want to date her half of the time in such 
a case and players who want to avoid her half of the time). Due 
to the probability involved, the analysis of this situation requires 
understanding the player’s preference for the draw, even though 
people are only interested in pure strategic equilibrium.

Combinatorial Games

Games in which the difficulty of finding an optimal strategy 
stems from the multiplicity of possible moves are called 
combinatorial games. Examples include chess and go. Games that 
involve imperfect information may also have a strong combinatorial 
character, for instance backgammon. There is no unified theory 
addressing combinatorial elements in games. There are, however, 
mathematical tools that can solve some particular problems and 
answer some general questions. Games of perfect information 
have been studied in combinatorial game theory, which has 
developed novel representations, e.g., surreal numbers, as well as 
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combinatorial and algebraic (and sometimes non-constructive) 
proof methods to solve games of certain types, including “loopy” 
games that may result in infinitely long sequences of moves. These 
methods address games with higher combinatorial complexity 
than those usually considered in traditional (or “economic”) game 
theory.[31,32] A typical game that has been solved this way is Hex. 
A related field of study, drawing from computational complexity 
theory, is game complexity, which is concerned with estimating the 
computational difficulty of finding optimal strategies. Research in 
artificial intelligence has addressed both perfect and imperfect 
information games that have very complex combinatorial 
structures (like chess, go, or backgammon) for which no provable 
optimal strategies have been found. The practical solutions 
involve computational heuristics, like alpha-beta pruning or use 
of artificial neural networks trained by reinforcement learning, 
which make games more tractable in computing practice.

Infinitely Long Games

Games, as studied by economists and real-world game players, 
are generally finished in finitely many moves. Pure mathematicians 
are not so constrained and set theorists in particular study games 
that last for infinitely many moves, with the winner (or other 
payoff) not known until after all those moves are completed. The 
focus of attention is usually not so much on the best way to play 
such a game, but whether one player has a winning strategy. (It 
can be proven, using the axiom of choice, that there are games - 
even with perfect information and where the only outcomes are 
“win” or “lose” - for which neither player has a winning strategy.) 
The existence of such strategies, for cleverly designed games, has 
important consequences in descriptive set theory.

Discrete and Continuous Games

Much of game theory is concerned with finite, discrete games 
that have a finite number of players, moves, events, outcomes, etc. 
Many concepts can be extended, however. Continuous games allow 
players to choose a strategy from a continuous strategy set. For 
instance, Cournot competition is typically modeled with players’ 
strategies being any non-negative quantities, including fractional 
quantities. Continuous games allow the possibility for players to 
communicate with each other under certain rules, primarily the 
enforcement of a communication protocol between the players. 
By communicating, players have been noted to be willing to 
provide a larger amount of goods in a public good game than they 
ordinarily would in a discrete game, and as a result, the players 
are able to manage resources more efficiently than they would in 
discrete games, as they share resources, ideas and strategies with 
one another. This incentivizes, and causes, continuous games to 
have a higher median cooperation rate. [35]

Differential Games

Differential games such as the continuous pursuit and evasion 
game are continuous games where the evolution of the players’ 
state variables is governed by differential equations. The problem 

of finding an optimal strategy in a differential game is closely 
related to the optimal control theory. In particular, there are two 
types of strategies: the open-loop strategies are found using the 
Pontryagin maximum principle while the closed-loop strategies 
are found using Bellman’s Dynamic Programming method. A 
particular case of differential games are the games with a random 
time horizon.[36] In such games, the terminal time is a random 
variable with a given probability distribution function. Therefore, 
the players maximize the mathematical expectation of the cost 
function. It was shown that the modified optimization problem 
can be reformulated as a discounted differential game over an 
infinite time interval.

Evolutionary Game Theory

Evolutionary game theory studies players who adjust their 
strategies over time according to rules that are not necessarily 
rational or farsighted.[37] In general, the evolution of strategies 
over time according to such rules is modeled as a Markov chain 
with a state variable such as the current strategy profile or how 
the game has been played in the recent past. Such rules may 
feature imitation, optimization, or survival of the fittest. In biology, 
such models can represent evolution, in which offspring adopt 
their parents’ strategies and parents who play more successful 
strategies (i.e., corresponding to higher payoffs) have a greater 
number of offspring. In the social sciences, such models typically 
represent strategic adjustment by players who play a game many 
times within their lifetime and, consciously or unconsciously, 
occasionally adjust their strategies. [38]

Stochastic Outcomes (And Relation to other Fields)

Individual decision problems with stochastic outcomes are 
sometimes considered “one-player games”. They may be modeled 
using similar tools within the related disciplines of decision 
theory, operations research, and areas of artificial intelligence, 
particularly AI planning (with uncertainty) and multi-agent 
system. Although these fields may have different motivators, 
the mathematics involved are substantially the same, e.g., using 
Markov decision processes (MDP).[39] Stochastic outcomes can 
also be modeled in terms of game theory by adding a randomly 
acting player who makes “chance moves” (“moves by nature”). 
[40] This player is not typically considered a third player in what 
is otherwise a two-player game, but merely serves to provide a 
roll of the dice where required by the game.

For some problems, different approaches to modeling 
stochastic outcomes may lead to different solutions. For example, 
the difference in approach between MDPs and the minimax 
solution is that the latter considers the worst-case over a set of 
adversarial moves, rather than reasoning in expectation about 
these moves given a fixed probability distribution. The minimax 
approach may be advantageous where stochastic models of 
uncertainty are not available but may also be overestimating 
extremely unlikely (but costly) events, dramatically swaying 
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the strategy in such scenarios if it is assumed that an adversary 
can force such an event to happen. General models that include 
all elements of stochastic outcomes, adversaries, and partial 
or noisy observability (of moves by other players) have also 
been studied. The “gold standard” is considered to be partially 
observable in stochastic game (POSG), but few realistic problems 
are computationally feasible in POSG representation. 

Metagames

These are games the play of which is the development 
of the rules for another game, the target or subject game. 
Metagames seek to maximize the utility value of the rule set 
developed. The theory of metagames is related to mechanism 
design theory. The term metagame analysis is also used to refer 
to a practical approach developed by Nigel Howard, whereby 
a situation is framed as a strategic game in which stakeholders 
try to realize their objectives by means of the options available 
to them. Subsequent developments have led to the formulation of 
confrontation analysis.

Pooling Games

These are games prevailing over all forms of society. Pooling 
games are repeated plays with changing payoff table in general 
over an experienced path, and their equilibrium strategies usually 
take a form of evolutionary social convention and economic 
convention. Pooling game theory emerges to formally recognize the 
interaction between optimal choice in one play and the emergence 
of forthcoming payoff table update path, identify the invariance 
existence and robustness, and predict variance over time. The 
theory is based upon topological transformation classification of 
payoff table update over time to predict variance and invariance 
and is also within the jurisdiction of the computational law of 
reachable optimality for ordered system.

Mean Field Game Theory

Mean field game theory is the study of strategic decision 
making in very large populations of small interacting agents. This 
class of problems was considered in the economics literature by 
Boyan Jovanovic and Robert W. Rosenthal, in the engineering 
literature by Peter E. Caines, and by mathematicians Pierre-Louis 
Lions and Jean-Michel Lasry.

Representation of Games

The games studied in game theory are well-defined 
mathematical objects. To be fully defined, a game must specify 
the following elements: the players of the game, the information 
and actions available to each player at each decision point, and 
the payoffs for each outcome. (Eric Rasmusen refers to these four 
“essential elements” by the acronym “PAPI”.) A game theorist 
typically uses these elements, along with a solution concept of 
their choosing, to deduce a set of equilibrium strategies for each 
player such that, when these strategies are employed, no player 
can profit by unilaterally deviating from their strategy. These 

equilibrium strategies determine an equilibrium to the game-a 
stable state in which either one outcome occurs or a set of 
outcomes occur with known probability.

In games, players typically have a ‘Dominant Strategy’, where 
they are incentivised to choose the best possible strategy that 
gives them the maximum payoff and stick to it even when the 
other player/s change their strategies or choose a different option. 
However, depending on the possible payoffs, one of the players may 
not possess a ‘Dominant Strategy, while the other player might. A 
player not having a dominant strategy is not a confirmation that 
another player won’t have a dominant strategy of their own, which 
puts the first player at an immediate disadvantage. However, there 
is the chance of both player’s possessing Dominant Strategies, 
when their chosen strategies and their payoffs are dominant, and 
the combined payoffs form an equilibrium. When this occurs, it 
creates a Dominant Strategy Equilibrium. This can be because of 
a Social Dilemma, where a game possesses an equilibrium created 
by two or multiple players who all have dominant strategies, and 
the game’s solution is different to what the cooperative solution to 
the game would have been.

There is also the chance of a player having more than one 
dominant strategy. This occurs when reacting to multiple 
strategies from a second player, and the first player’s separate 
responses having different strategies to each other. This means 
that there is no chance of a Nash Equilibrium occurring within the 
game. Most cooperative games are presented in the characteristic 
function form, while the extensive and the normal forms are used 
to define noncooperative games.

Extensive Form

The extensive form can be used to formalize games with 
a time sequencing of moves. Extensive form games can be 
visualized using game trees (as pictured here). Here each vertex 
(or node) represents a point of choice for a player. The player is 
specified by a number listed by the vertex. The lines out of the 
vertex represent a possible action for that player. The payoffs are 
specified at the bottom of the tree. The extensive form can be 
viewed as a multi-player generalization of a decision tree.[50-60] 
To solve any extensive form game, backward induction must be 
used. It involves working backward up the game tree to determine 
what a rational player would do at the last vertex of the tree, what 
the player with the previous move would do given that the player 
with the last move is rational, and so on until the first vertex of the 
tree is reached. The game pictured consists of two players. 

The way this particular game is structured (i.e., with sequential 
decision making and perfect information), Player 1 “moves” first 
by choosing either F or U (fair or unfair). Next in the sequence, 
Player 2, who has now observed Player 1’s move, can choose to 
play either A or R. Once Player 2 has made their choice, the game 
is considered finished and each player gets their respective payoff, 
represented in the image as two numbers, where the first number 
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represents Player 1’s payoff, and the second number represents 
Player 2’s payoff. Suppose that Player 1 chooses U and then Player 
2 chooses A: Player 1 then gets a payoff of “eight” (which in real-
world terms can be interpreted in many ways, the simplest of 
which is in terms of money but could mean things such as eight 
days of vacation or eight countries conquered or even eight more 
opportunities to play the same game against other players) and 
Player 2 gets a payoff of “two”. The extensive form can also capture 
simultaneous-move games and games with imperfect information. 
To represent it, either a dotted line connects different vertices to 
represent them as being part of the same information set (i.e., the 
players do not know at which point they are), or a closed line is 
drawn around them [60-70].

Normal Form

The normal (or strategic form) game is usually represented 
by a matrix which shows the players, strategies, and payoffs (see 
the example to the right). More generally it can be represented by 
any function that associates a payoff for each player with every 
possible combination of actions. In the accompanying example 
there are two players; one chooses the row and the other chooses 
the column. Each player has two strategies, which are specified by 
the number of rows and the number of columns. The payoffs are 
provided in the interior. The first number is the payoff received by 
the row player (Player 1 in our example); the second is the payoff 
for the column player (Player 2 in our example). Suppose that 
Player 1 plays up and that Player 2 plays Left. Then Player 1 gets a 
payoff of 4, and Player 2 gets 3 [70-90] (Table 3). 

Table 3: Normal form or payoff matrix of a 2-player, 2-strategy game.

 Player 2 
chooses Left

Player 2 
chooses Right

Player 1 
chooses Up 4, 3 -1, -1

Player 1 
chooses Down 0, 0 3, 4

When a game is presented in normal form, it is presumed that 
each player acts simultaneously or, at least, without knowing the 
actions of the other. If players have some information about the 
choices of other players, the game is usually presented in extensive 
form. Every extensive-form game has an equivalent normal-form 
game, however, the transformation to normal form may result in 
an exponential blowup in the size of the representation, making it 
computationally impractical.

Chemical game theory is an alternative model of game theory 
that represents and solves problems in strategic interactions or 
contested human decision making. Differences with traditional 
game theory concepts include the use of metaphorical molecules 
called “knowlecules”, which represent choices and decisions 
among players in the game. Using knowlecules, entropic choices 
and the effects of preexisting biases are taken into consideration. 

A game in chemical game theory is then represented in the form 
of a process flow diagram consisting of unit operations. The 
unit operations represent the decision-making processes of the 
players and have similarities to the garbage can model of political 
science. A game of N players, N being any integer greater than 1, 
is represented by N reactors in parallel. The concentrations that 
enter a reactor correspond to the bias that a player enters the 
game with. The reactions occurring in the reactors are comparable 
to the decision-making process of each player. The concentrations 
of the final products represent the likelihood of each outcome 
given the preexisting biases and pains for the situation [91-100].

Now that finally enough has been explained about the 
theory of games, I want to state the fact in simple words that it is 
actually possible to produce chemical compounds using artificial 
intelligence and good strategies such as game theory and selection 
theory. Easier and faster. The main thing that should be noted is 
that with this method, reaching the final answer, especially in the 
production of pharmaceutical products, is much simpler, more 
accurate, and faster.
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