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Introduction

Heterogeneous High-Performance Computing (HPC) 
systems-composed of CPUs, GPUs, and specialized accelerators-
enable efficient execution of diverse scientific and industrial 
workloads. Optimal mapping and scheduling of jobs 
across such resources is crucial for minimizing makespan, 
maximizing throughput, and ensuring efficient utilization [1-
2]. Traditionally, this optimization problem has been addressed 
using mathematical programming, heuristic/metaheuristic 
algorithms, and, more recently, reinforcement learning [3-5]. 
However, these methods require explicit modeling, domain 
expertise, and are often computationally intensive for large-
scale, real-world deployments.

Large Language Models (LLMs), exemplified by ChatGPT, 
Claude, and others, have demonstrated remarkable capabili-
ties in code generation, reasoning, and problem de- composi 

 
tion. This raises a natural question: Can LLMs contribute mean-
ingful, feasible, and interpretable solutions to the classic problem 
of workload mapping and scheduling in heterogeneous HPC en-
vironments?

In this paper, we survey the emerging intersection of LLMs 
and HPC optimization, provide a preliminary benchmarking 
methodology, and present initial findings comparing LLM-
generated schedules to MILP and heuristic baselines.

Literature Review

Classical Optimization Approaches

Workload mapping and scheduling in HPC has a long 
history of research, with prominent approaches including 
integer and mixed-integer linear programming (ILP/
MILP), heuristics such as Heterogeneous Earliest Finish 
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Time (HEFT) and Opportunistic Load Balancing (OLB), 
and metaheuristics (e.g., Genetic Algorithms (GA), Simulated 
Annealing (SA)) [4] [6-10]. These methods are valued for 
their guarantees of feasibility and, in the case of mathematical 
programming, provable optimality for small-to-medium-scale 
instances.

Recent work has introduced Graph Neural Networks 

(GNNs) and Reinforcement Learning (RL) for dynamic, 
adaptive scheduling in heterogeneous and time-varying con- 
texts [11-12] [8].  Figure 1 represents a standard Petri net 
workflow with process and state representation. Likewise (Figure 
2) represent a Standard Task Graph [9] for robot control complex 
graph in scheduling with default communication overheads as some 
of the examples of standard workloads graphs representations.

Figure 1: Simplified Petri Net representing task dependencies and resource tokens [7].

Figure 2: Workflow 4: Robot control STGS (complex) graph [8].
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LLMs for Optimization and Scheduling

There is a growing body of work exploring LLMs for 
optimization tasks. Wang et al. [13] propose a benchmark 
suite evaluating LLMs’ performance in code optimization and 
scheduling. Gupta et al. [14] introduce HPC-Coder, a model for 
automated code annotation and parallelism suggestion. LLM-
based agents are increasingly proposed as planners or co-pilots 
for scheduling, resource allocation, and configuration tasks.

However, direct application of LLMs to multi-constraint, 
large-scale HPC scheduling remains under-explored, with 

known challenges in context length, mathematical precision, 
and constraint adherence. There is currently no standard 
benchmarking methodology for LLM-driven HPC workload 
mapping, motivating the present study.

Methodology

Benchmarking Framework

We propose an evaluation framework (Figure 3) where 
LLMs and classical solvers are presented with identical, 
structured descriptions of HPC systems and workloads, along 
with objectives and constraints. The workflow comprises:

Figure 3: Methodology overview: Both classical solvers and LLMs receive the same HPC scenario, produce schedules and reasoning, 
which are then evaluated comparatively.

•	 System Modeling: Nodes specified with CPUs, RAM, 
features (e.g., GPU, SSD), data transfer rates, and power 
limits.

•	 Workload Modeling: Tasks defined by resource needs, 
feature requirements, du- rations, data sizes, and depen-
dency graphs.

•	 Objectives: Minimizing makespan, balancing node load, 
and optimizing feature usage.

•	 Constraints: Task-to-node exclusivity, resource limits, 
dependency order, data transfer penalties, feature satis-
faction, and fairness.

LLMs (ChatGPT, Claude) are prompted with the full 
scenario in natural language or JSON, and asked to generate 
job-to-node assignments, start/end times, and reasoning. 
Solutions are compared to those from a MILP implementation 
(Python/PuLP) and a heuristic baseline (e.g., OLB).

Table 3 summarizes our qualitative assessment of different 
LLMs in scheduling HPC workloads. Each model was prompted 
with the same system and workload scenario [15]. The criteria 

include overall makespan, task and system specification 
correctness, quality of reasoning, explanation clarity, code 
generation, and mapping validity.

Sample Scenario

A representative test scenario:

•	 Nodes:

–	 NodeA: 32 CPUs, 128 GB RAM, Features: [CPU, GPU], 
Data Rate: 10 Gbps

–	 NodeB: 64 CPUs, 256 GB RAM, Features: [CPU], Data 
Rate: 5 Gbps

–	 NodeC: 16 CPUs, 64 GB RAM, Features: [CPU, SSD], 
Data Rate: 2 Gbps

•	     Tasks:

–	 Task1: 8 CPUs, 32 GB RAM, [GPU], 3h, 10GB, Depen-
dencies: []

–	 Task2: 4 CPUs, 16 GB RAM, [CPU], 2h, 5GB, Dependen-
cies: [Task1]
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–	 Task3: 16 CPUs, 64 GB RAM, [CPU, SSD], 5h, 20GB, []

–	 Task4: 8 CPUs, 32 GB RAM, [CPU], 

1See [15] for the current list of models hosted at GWDG.

•	 Objectives: Minimize makespan, balance load, efficient use 
of multi-feature nodes.

•	 Constraints: No over-allocation, respect dependencies, ac-
count for data transfer if tasks assigned to different nodes.

We use data transfer time on purpose to increase the 
use case to a realistic scenario when the ratio of output data 
increases, then it becomes an important factor. We can see if 
the model grasps such nuances for the experimental setup 
(Figure 4).

Figure 4: DAG for the sample HPC workflow.

Evaluation Metrics

•	 Makespan: Total completion time of all tasks.

•	 Constraint Violations: Resource, feature, and depen-
dency adherence.

•	 Node Utilization Balance: Degree of load balancing.

•	 Solution Explainability: Clarity and logic of reason-
ing (qualitative).

Experimental Procedure

Each scenario is scheduled by:

1.	 A MILP optimizer (PuLP-based, extended for data trans-
fer).

2.	 An OLB heuristic baseline.

3.	 LLMs (e.g., GPT-4, Claude) via API, with chain-of-
thought prompting.

At first, we used a simple prompt, but when testing various 
prompts, we were assured to see already good reflection of the 
models and sometimes a correct result. This shows the results 
were often incomplete due to the ambiguity of the instructions. 
Therefore, we refined the prompt to this:
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Prompt given to each LLM for benchmarking:

You are an expert high-performance computing (HPC) workload scheduler.

Below is a description of a heterogeneous HPC system and a set of computational tasks (a workflow) to be scheduled. Your objectives 
are:

-	 Each task should be assigned to a node, specifying the start and end time for each task.
-	 Ensure that all node resource limits (CPUs, RAM), task feature requirements, dependencies, and system specifications are 
satisfied.
-	 Consider both the computational resources and the speed of data transfer between nodes when assigning tasks, as data 
movement and transfer delays directly impact total makespan.
-	 Maximize parallel execution of independent tasks whenever node resources allow.
-	 Important: If a task depends on one or more other tasks that ran on different nodes, the output data transfer for each 
dependency may begin only after the producing (parent) task has fully completed. The dependent task may not start until all required 
data from its dependencies has arrived at its assigned node.
-	 Data transfer delay must always be added if a task’s dependency ran on a different node. Use the formula:
-	 data transfer delay (in hours) = data size (GB) / receiving node’s data transfer rate (Gbps)
-	 For example: if a 20GB output must be sent to a node with 10 Gbps, the transfer takes 2 hours.
-	 Multi-feature nodes (e.g., GPU, SSD) should be reserved for tasks that need those features; avoid assigning tasks to such 
nodes if not necessary.
-	 Provide step-by-step reasoning for each assignment, including explicit explanations for any trade-offs or data transfer 
considerations.
-	 (Optional) Generate code (Python or pseudocode) that would automate or verify the final schedule.

System Nodes
-	 NodeA: 32 CPUs, 128 GB RAM, Features: [CPU, GPU], Data Transfer Rate: 10 Gbps
-	 NodeB: 64 CPUs, 256 GB RAM, Features: [CPU], Data Transfer Rate: 5 Gbps
-	 NodeC: 16 CPUs, 64 GB RAM, Features: [CPU, SSD], Data Transfer Rate: 2 Gbps

Workload Tasks
-	 Task1: Needs 8 CPUs, 32 GB RAM, Features: [GPU], Duration: 3h, Data Output: 10GB, Dependencies: []
-	 Task2: Needs 4 CPUs, 16 GB RAM, Features: [CPU], Duration: 2h, Data Output: 5GB, Dependencies: [Task1]
-	 Task3: Needs 16 CPUs, 64 GB RAM, Features: [CPU, SSD], Duration: 5h, Data Output: 20GB, Dependencies: []
-	 Task4: Needs 8 CPUs, 32 GB RAM, Features: [CPU], Duration: 4h, Data Output: 15GB, Dependencies: [Task2, Task3]
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Objectives And Constraints
-	 Minimize total makespan (overall time to complete all tasks), considering both computation and any required data transfer 
delays.
-	 Do not exceed any node’s CPU or RAM capacity at any time.
-	 Each task must run entirely on a single node with all required features.
-	 Tasks may only start after all dependencies are finished and any required data is transferred and present on the assigned 
node.
-	 If a dependent task is assigned to a different node from its parent(s), the data transfer delay must be added before it can 
begin.
-	 Provide explanations for your assignments, especially where your mapping minimizes data transfer time or resource 
contention.
  (Optional) Provide code (Python or pseudocode) to validate or automate the schedule.

Expected Output Format
For each task, output a table with:
-	 Task ID
-	 Assigned Node
-	 Start Time (considering dependencies and any transfer)
-	 End Time
-	 If data transfer was needed (yes/no, specify time and data amount)
-	 Short explanation
After the table, provide:
-	 Overall schedule make span
-	 Any generated code (if produced)
-	 Any issues or assumptions you made

(Optional) If possible, also provide an alternative schedule with a less efficient mapping and its and its resulting makespan for 
comparison.

Analysis of Make span: Best- and Worst-Case Scenarios

The make span, i.e., the total time to complete all tasks, is 
determined by both the assignment of tasks to nodes and the 
necessary data transfers dictated by task dependencies. To 
guarantee the correctness of the baseline solution, we provide 
a step-by-step, exhaustive proof examining all plausible node 
assignments for each task in the benchmark scenario. This analysis 
takes into account every combination of resource constraints, 
feature requirements, task dependencies, and mandatory data 
transfer delays.

All Plausible Assignments:

1.	 Task2 on Node A (best-case):

•	 Task1 on Node A: 0–3h

•	 Task2 on Node A: 3–5h (no transfer)

•	 Task3 on Node C: 0–5h

•	 Task4 on Node A: Waits for Task2 (5h) and Task3’s out-
put from Node C:

–	 20GB / 10Gbps = 2h; `ready at 7h. Starts at 7h, ends at 
11h.

2.	 Task2 on Node B:

•	 Task2 requires Task1’s output:

–	 10GB / 5Gbps = 2h. Starts at 5h, ends at 7h.

•	 Task4 on Node B:

–	 Waits for Task2 (7h) and Task3’s output from Node C:

	 20GB / 5Gbps = 4h (ready at 9h). Starts at 9h, ends at 
13h.

•	 Task4 on NodeA:

–	 Needs Task2 output from NodeB:

	 5GB / 10Gbps = 0.5h (ready at 7.5h), Task3 output as 
above (ready at 7h). Starts at 7.5h, ends at 11.5h.

•	 Task4 on NodeC:

–	 Needs Task2 output from NodeB:

	 5GB / 2Gbps = 2.5h (ready at 9.5h), Task3 local (5h). 
Starts at 9.5h, ends at 13.5h.

3.	 Task2 on NodeC:

•	 Task2 requires Task1’s output:
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–	 10GB / 2Gbps = 5h. Starts at 8h, ends at 10h.

•	 Task4 on NodeC:

–	 Waits for Task2 (10h), Task3 local (5h). Starts at 10h, 
ends at 14h.

•	 Task4 on NodeA:

–	 Needs Task2 output:

	 5GB / 10Gbps = 0.5h (ready at 10.5h), Task3 output:

	 20GB / 10Gbps = 2h (ready at 7h). Starts at 10.5h, ends 
at 14.5h.

•	 Task4 on NodeB:

–	 Needs Task2 output:

	 5GB / 5Gbps = 1h (ready at 11h), Task3 output:

	 20GB / 5Gbps = 4h (ready at 9h). Starts at 11h, ends at 
15h (Table 1).

	Optimal Solution: In every scenario, the minimal possible 
makespan is 11 hours. This step-by-step analysis ensures 
the validity and reproducibility of our baseline, and sets 
a transparent standard for evaluating the scheduling 
methods.

Table 1: Summary: Earliest possible Task4 completion for all valid Task2 and Task4 node assignments. 

Task2 Node Task4 Node Task4 Start (h) Task4 End (h) Makespan (h)

NodeA NodeA 7 11 11

NodeB NodeA 7.5 11.5 11.5

NodeB NodeB 9 13 13

NodeC NodeC 10 14 14

NodeC NodeA 10.5 14.5 14.5

NodeC NodeB 11 15 15

Explanation of Baseline Schedule and Makespan:

The scheduling graph and (Table 2) illustrate the optimal 
solution for our benchmark scenario. Tasks are mapped to 
nodes according to their feature requirements and re- source 
constraints.  Both Task1 (GPU) and Task3 (SSD) begin in 
parallel on NodeA and NodeC, respectively. Task2, which depends 
on Task1, is co-located on NodeA to eliminate unnecessary data 

transfer. After both Task2 and Task3 complete, Task4 can 
begin only when all dependencies and required data are available 
on its assigned node (NodeA). Since Task3’s output must be 
transferred from NodeC to NodeA (20GB over a 10Gbps link, 
resulting in a 2-hour delay), Task4’s start is determined by the 
completion of data transfer rather than the earlier completion 
of Task2 (Figure 5).

Table 2: Summary of optimal schedule for the benchmark scenario (critical path method). 

Task Assigned Node Start (h) End (h) Data Transfer Explanation

Task1 NodeA 0 3 None Only NodeA has GPU 

Task2 NodeA 3 5 None Follows Task1, no transfer needed

Task3 NodeC 0 5 None Only NodeC has SSD

Task4 NodeA 7 11 20GB from NodeC (2h 
over 10Gbps) Waits for data from Task3 via network

Figure 5: DAG for the sample HPC workflow.
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This approach makes explicit the importance of both 
parallel task execution and minimizing data transfer delays in 
heterogeneous environments. The resulting critical path-Task1 
→ Task2 → (wait for Task3 data) → Task4-yields a minimal 
makespan of 11 hours. This solution serves as a robust baseline 
for evaluating automated schedulers or LLM-based workload 
mapping approaches.

Results are parsed and compared for feasibility, optimality, 
and explanation quality.

Findings and Discussion

Our preliminary tests with scenarios of moderate size 
(<10 tasks, <5 nodes) show that LLMs such as GPT-4 and 
Claude can generate feasible job-to-node assignments and 
produce human-like, explainable reasoning for their choices. In 
many cases, LLM- generated schedules respect basic constraints 
(resource limits, dependencies) and approximate heuristic 
solutions.

However, several limitations are evident:

•	 Scaling: LLMs struggle with long, highly structured 
prompts as the scenario size grows, sometimes leading to 
incomplete or infeasible solutions.

•	 Constraint Adherence:  Strict, non-negotiable con-
straints (e.g., data transfer delay, resource exclusivity) 
may be violated unless explicitly emphasized and tested.

•	 Optimality: MILP solvers consistently find lower 
makespan solutions, particularly for complex dependencies 
and high resource utilization. LLMs tend toward “greedy” or 
“naive” allocations unless specifically guided.

•	 Explainability: LLMs excel at providing explanations for 
scheduling choices, an area where classical solvers are 
lacking.

Notably, LLMs may be best positioned as co-pilots 
or advisors-generating candidate solutions, explaining 
heuristics, or translating human objectives into machine-usable 
constraints-rather than replacing solvers in mission-critical 
optimization.

Discussion of Model Benchmarking Results

Table 3 summarizes the comparative performance of state-
of-the-art large language mod- els (LLMs) and code-oriented AI 
systems on the canonical HPC scheduling scenario. We assess the 
results based on what it produced denoted by + (correct), 0 
(not given), - (wrong), NA (not able). Several key trends and 
insights emerge from this evaluation:

Table 3: Comprehensive qualitative assessment of LLM scheduling and reasoning on HPC mapping benchmarks. Columns: Makespan (total 
completion time), Task Through- put (successful task completion), Mapping/Node Utilization (efficient, correct use of resources), Constraint 
Adherence (resource, dependency, and transfer constraints), Reasoning (step-by-step logic), Explanation (clarity), Code (artifact produced), So- 
lution Explainability (transparency and interpretability of solution).

Model Makespan Task 
Throughput

Mapping / 
Node Util.

Constraint 
Adherence Reasoning Explanation Code Solution 

Explainability

Llama 3.1 8B 
Instruct 14h + 0 0 0 + 0 +

Gemma 3 27B 
Instruct 9h + 0 0 0 + + +

InternVL2.5 8B 
MPO 19h + 0 0 0 + + +

Qwen 3 32B 11.5h + + + + + 0 +

DeepSeek R1 11h + + + + + 0 +

Mistral Large 
Instruct 11h + + + + + + +

Codestral 22B 9h + 0 0 0 + + +

o3 11h + + + + + + +

o3-mini 11h + + + + + + +

GPT-4o 12.5h + + + + + + +

GPT-4.1 11.5h + + + + + + +

GPT-4.1 Mini 9h + + 0 0 + + +

•	 Task Throughput and Feasibility: All models success-
fully generated schedules that mapped every task to an 
available node, demonstrating a strong capacity for pro-
ducing valid, feasible solutions in moderately sized, fea-
ture-rich HPC environments.

•	 Constraint Adherence and Make span Accuracy : The 
most prominent area of differentiation between mod-
els was their ability to enforce strict resource, dependency, 
and especially data transfer constraints. Only a subset 
of models-such as o3, o3-mini, DeepSeek R1, Qwen 3 32B, 
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and Mistral Large Instruct-consistently calculated correct 
transfer delays and critical path timings, producing the 
minimal or near-minimal makespan (11–11.5 hours). Many 
others, including Llama 3.1 8B, Gemma 3 27B, Codestral 22B, 
and GPT-4.1 Mini, underestimated makespan by overlooking 
inter-node data movement, while others (e.g., InternVL2.5 8B 
MPO) overestimated by serializing independent tasks.

•	 Mapping and Node Utilization: High-performing mod-
els leveraged resource locality and feature matching, co-lo-
cating dependent tasks where possible and as- signing tasks 
requiring special hardware (GPU, SSD) to the appropriate 
nodes. Suboptimal models sometimes failed to minimize data 
transfers or maximize par- allelism, which directly impacted 
solution quality.

•	 Reasoning, Explanation, and Code Generation: Almost 
all advanced models offered step-by-step rationales and 
transparent scheduling logic, and many (including o3, GPT-
4o, Codestral 22B, and Mistral Large Instruct) generated 
readable code for schedule validation. This growing ex-

plainability makes LLMs increasingly valuable for human-
in-the-loop and educational use cases.

•	 Explainability of Solutions: Even where logical errors 
occurred, most models presented their reasoning in a trans-
parent manner, aiding diagnosis and benchmarking. This 
suggests that LLMs are already strong as “AI co-pilots” and 
explainers, even if their autonomous optimization skills 
are not yet universally reliable.

•	 Summary: These findings demonstrate that while LLMs are 
not yet a replacement for classical optimization methods 
in strict, mission-critical scheduling, the leading models 
can now approach or match the best-known solutions 
for moderately complex scenar- ios. Their outputs are 
interpretable, often auditable via code, and can form a 
powerful basis for hybrid scheduling pipelines and operator 
support tools. Nonetheless, rigorous prompt engineering, 
constraint validation, and continuous benchmarking remain 
essential to ensure the correctness and reliability of LLM-
generated schedules.

Example Outputs

Select snippets of interesting results.

Llmama 3.1 8B Capturing Features of System and the Tasks

# Define the graph G = nx.DiGraph()

# Add nodes and edges
G.add node (” NodeA”, cpus=32, ram=128, features= [” CPU”,” GPU”], data rate=10) G.add node (” NodeB”, cpus=64, ram=256, features= 
[” CPU”], data rate=5)
G.add node (” NodeC”, cpus=16, ram=64, features= [” CPU”,” SSD”], data rate=2)

G.add edge (” NodeA”,” Node A”, task=” Task1”, cpus=8, ram=32, features= [” GPU”], duration=3, data=10)
G.add edge (” Node A”,” Node A”, task=” Task2”, cpus=4, ram=16, features= [” CPU”], duration=2, data=5)
G.add edge (” Node”,” NodeB”, task=” Task3”, cpus=16, ram=64, features= [” CPU”,” SSD”], duration=5, data=20)

First, assign Task1 to NodeA. That uses 8 CPUs and 32 
GB RAM. NodeA has 32 CPUs and 128 GB, so after Task1, 
remaining is 24 CPUs and 96 GB. That’s fine.

Task3 needs SSD, so NodeC. NodeC has 16 CPUs and 
64 GB. Task3 uses 16 CPUs and 64 GB, so it fills up NodeC 
completely. So Task3 is on NodeC.

Conclusion and Future Work

Conclusion

This benchmark evaluation demonstrates both the promise 
and the current limitations of Large Language Models (LLMs) 
in high-performance computing (HPC) workload map- ping 
and scheduling. Many advanced LLMs, including GPT-4o, 
o3, DeepSeek R1, Qwen 3 32B, and Mistral Large Instruct, 
are now able to generate feasible, interpretable, and near-

optimal scheduling solutions for moderately sized, feature-
rich scenarios. Nonetheless, significant challenges remain. 
In particular, strict constraint satisfaction is not always 
achieved, as many models underestimated or misapplied data 
transfer delays and critical path logic, which resulted in overly 
optimistic makespans or suboptimal parallelism.

Furthermore, as the scale and complexity of dependency 
graphs increase, some models either resorted to excessive 
serialization-overestimating makespan-or failed to fully 
exploit available parallelism. While most leading models now 
provide stepwise rationales and readable code, systematic and 
automated assessment of solution explainability and error 
detection remains an area for further development. These 
findings suggest that, while LLMs show considerable promise, 
additional advances are needed to fully realize their potential 
for robust and efficient HPC scheduling.
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Future Work

This initial benchmarking study identifies several 
promising directions for advancing the integration of large 
language models (LLMs) into high-performance computing 
(HPC) scheduling workflows. First, future research should 
explore the fine-tuning of LLMs using realistic scheduling 
traces and explicit constraint rules to improve their reliability 
and domain alignment. The development of hybrid 
architectures, in which LLMs generate initial scheduling 
blueprints subsequently refined by exact solvers such as 
mixed integer linear programming (MILP) or by learning-
based agents (e.g., reinforcement learning), also represents a 
promising avenue for achieving both efficiency and optimality. 
In addition, there is a clear need for systematic, large-scale 
benchmarking on both real-world and synthetic HPC workloads, 
supported by standardized prompts and reference solutions, 
to facilitate objective comparison and progress tracking across 
the community.

Finally, the creation of automated tools for scoring, 
validating, and providing feed- back on the explainability and 
correctness of LLM-generated schedules will be critical for 
practical adoption. Ultimately, these findings support a vision 
in which LLMs are not standalone replacements for established 
scheduling solvers, but rather serve as explainers, translators, 
and heuristic generators-working in concert with classical 
optimization techniques and human experts to advance the 
state of HPC workflow optimization.
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