
Research Article
Volume 6 Issue 5 - July 2025
DOI: 10.19080/RAEJ.2025.06.555696

Robot Autom Eng J
Copyright © All rights are reserved by Julian Kunkel

Evaluating Large Language Models for Workload
Mapping and Scheduling in Heterogeneous HPC

Systems
Aasish Kumar Sharma1 and Julian Kunkel1*
1Faculty of Mathematics and Computer Science, Georg-August-Universita¨t G¨ottingen, Germany

Submission: July 04, 2025; Published: August 18, 2025

*Corresponding author: Julian Kunkel, Faculty of Mathematics and Computer Science, Georg-August- Georg-August-Universita¨t Gottingen,
Germany

Robot Autom Eng J 6(5): RAEJ.MS.ID.555696 (2025) 001

Introduction

Heterogeneous High-Performance Computing (HPC)
systems-composed of CPUs, GPUs, and specialized accelerators-
enable efficient execution of diverse scientific and industrial
workloads. Optimal mapping and scheduling of jobs
across such resources is crucial for minimizing makespan,
maximizing throughput, and ensuring efficient utilization [1-
2]. Traditionally, this optimization problem has been addressed
using mathematical programming, heuristic/metaheuristic
algorithms, and, more recently, reinforcement learning [3-5].
However, these methods require explicit modeling, domain
expertise, and are often computationally intensive for large-
scale, real-world deployments.

Large Language Models (LLMs), exemplified by ChatGPT,
Claude, and others, have demonstrated remarkable capabili-
ties in code generation, reasoning, and problem de- composi

tion. This raises a natural question: Can LLMs contribute mean-
ingful, feasible, and interpretable solutions to the classic problem
of workload mapping and scheduling in heterogeneous HPC en-
vironments?

In this paper, we survey the emerging intersection of LLMs
and HPC optimization, provide a preliminary benchmarking
methodology, and present initial findings comparing LLM-
generated schedules to MILP and heuristic baselines.

Literature Review

Classical Optimization Approaches

Workload mapping and scheduling in HPC has a long
history of research, with prominent approaches including
integer and mixed-integer linear programming (ILP/
MILP), heuristics such as Heterogeneous Earliest Finish

Abstract

The rapid advances in Large Language Models (LLMs) such as ChatGPT and Claude have opened new possibilities for AI-assisted optimization
and reasoning in complex technical domains. In this work, we explore the potential and limitations of LLMs for workload mapping and scheduling
in heterogeneous High-Performance Computing (HPC) landscapes, a domain traditionally dominated by mathematical programming, heuristics,
and reinforcement learning. We design a benchmarking framework where LLMs are prompted with structured HPC resource and workload
descriptions and are evaluated against MILP-based and heuristic solvers. Our pre- liminary findings show that LLMs can generate feasible
and explainable scheduling solutions, though there are some limitations in constraint satisfaction. Beyond so- lution generation, LLMs can
also empower users new to the optimization domain to produce code, discuss alternative approaches, and thereby accelerate both research
and production significantly. However, the benchmark results reveal that many current LLMs struggle with strict enforcement of resource and
dependency constraints-particularly those involving inter-node data transfers-leading to suboptimal or infeasible schedules in some cases.
Despite these challenges, leading models such as GPT-4o and Mistral Large Instruct demonstrate near-optimal performance and high solution
explainability. Overall, our study highlights both the promise and current limitations of LLMs for HPC scheduling, and suggests that further
research, especially in hybrid architectures and domain-specific fine-tuning, may unlock their full potential for practical high-performance
computing applications.

Index terms: Large Language Models (LLMs); HPC Scheduling, Workload Mapping; Reinforcement Learning; Mathematical Programming;
Heuristics; AI-assisted Optimization; High-Performance Computing (HPC); Constraint Satisfaction; Explainable Scheduling

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

002

Robotics & Automation Engineering Journal

Time (HEFT) and Opportunistic Load Balancing (OLB),
and metaheuristics (e.g., Genetic Algorithms (GA), Simulated
Annealing (SA)) [4] [6-10]. These methods are valued for
their guarantees of feasibility and, in the case of mathematical
programming, provable optimality for small-to-medium-scale
instances.

Recent work has introduced Graph Neural Networks

(GNNs) and Reinforcement Learning (RL) for dynamic,
adaptive scheduling in heterogeneous and time-varying con-
texts [11-12] [8]. Figure 1 represents a standard Petri net
workflow with process and state representation. Likewise (Figure
2) represent a Standard Task Graph [9] for robot control complex
graph in scheduling with default communication overheads as some
of the examples of standard workloads graphs representations.

Figure 1: Simplified Petri Net representing task dependencies and resource tokens [7].

Figure 2: Workflow 4: Robot control STGS (complex) graph [8].

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

003

Robotics & Automation Engineering Journal

LLMs for Optimization and Scheduling

There is a growing body of work exploring LLMs for
optimization tasks. Wang et al. [13] propose a benchmark
suite evaluating LLMs’ performance in code optimization and
scheduling. Gupta et al. [14] introduce HPC-Coder, a model for
automated code annotation and parallelism suggestion. LLM-
based agents are increasingly proposed as planners or co-pilots
for scheduling, resource allocation, and configuration tasks.

However, direct application of LLMs to multi-constraint,
large-scale HPC scheduling remains under-explored, with

known challenges in context length, mathematical precision,
and constraint adherence. There is currently no standard
benchmarking methodology for LLM-driven HPC workload
mapping, motivating the present study.

Methodology

Benchmarking Framework

We propose an evaluation framework (Figure 3) where
LLMs and classical solvers are presented with identical,
structured descriptions of HPC systems and workloads, along
with objectives and constraints. The workflow comprises:

Figure 3: Methodology overview: Both classical solvers and LLMs receive the same HPC scenario, produce schedules and reasoning,
which are then evaluated comparatively.

•	 System Modeling: Nodes specified with CPUs, RAM,
features (e.g., GPU, SSD), data transfer rates, and power
limits.

•	 Workload Modeling: Tasks defined by resource needs,
feature requirements, du- rations, data sizes, and depen-
dency graphs.

•	 Objectives: Minimizing makespan, balancing node load,
and optimizing feature usage.

•	 Constraints: Task-to-node exclusivity, resource limits,
dependency order, data transfer penalties, feature satis-
faction, and fairness.

LLMs (ChatGPT, Claude) are prompted with the full
scenario in natural language or JSON, and asked to generate
job-to-node assignments, start/end times, and reasoning.
Solutions are compared to those from a MILP implementation
(Python/PuLP) and a heuristic baseline (e.g., OLB).

Table 3 summarizes our qualitative assessment of different
LLMs in scheduling HPC workloads. Each model was prompted
with the same system and workload scenario [15]. The criteria

include overall makespan, task and system specification
correctness, quality of reasoning, explanation clarity, code
generation, and mapping validity.

Sample Scenario

A representative test scenario:

•	 Nodes:

–	 NodeA: 32 CPUs, 128 GB RAM, Features: [CPU, GPU],
Data Rate: 10 Gbps

–	 NodeB: 64 CPUs, 256 GB RAM, Features: [CPU], Data
Rate: 5 Gbps

–	 NodeC: 16 CPUs, 64 GB RAM, Features: [CPU, SSD],
Data Rate: 2 Gbps

•	 Tasks:

–	 Task1: 8 CPUs, 32 GB RAM, [GPU], 3h, 10GB, Depen-
dencies: []

–	 Task2: 4 CPUs, 16 GB RAM, [CPU], 2h, 5GB, Dependen-
cies: [Task1]

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

004

Robotics & Automation Engineering Journal

–	 Task3: 16 CPUs, 64 GB RAM, [CPU, SSD], 5h, 20GB, []

–	 Task4: 8 CPUs, 32 GB RAM, [CPU],

1See [15] for the current list of models hosted at GWDG.

•	 Objectives: Minimize makespan, balance load, efficient use
of multi-feature nodes.

•	 Constraints: No over-allocation, respect dependencies, ac-
count for data transfer if tasks assigned to different nodes.

We use data transfer time on purpose to increase the
use case to a realistic scenario when the ratio of output data
increases, then it becomes an important factor. We can see if
the model grasps such nuances for the experimental setup
(Figure 4).

Figure 4: DAG for the sample HPC workflow.

Evaluation Metrics

•	 Makespan: Total completion time of all tasks.

•	 Constraint Violations: Resource, feature, and depen-
dency adherence.

•	 Node Utilization Balance: Degree of load balancing.

•	 Solution Explainability: Clarity and logic of reason-
ing (qualitative).

Experimental Procedure

Each scenario is scheduled by:

1.	 A MILP optimizer (PuLP-based, extended for data trans-
fer).

2.	 An OLB heuristic baseline.

3.	 LLMs (e.g., GPT-4, Claude) via API, with chain-of-
thought prompting.

At first, we used a simple prompt, but when testing various
prompts, we were assured to see already good reflection of the
models and sometimes a correct result. This shows the results
were often incomplete due to the ambiguity of the instructions.
Therefore, we refined the prompt to this:

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

005

Robotics & Automation Engineering Journal

Prompt given to each LLM for benchmarking:

You are an expert high-performance computing (HPC) workload scheduler.

Below is a description of a heterogeneous HPC system and a set of computational tasks (a workflow) to be scheduled. Your objectives
are:

-	 Each task should be assigned to a node, specifying the start and end time for each task.
-	 Ensure that all node resource limits (CPUs, RAM), task feature requirements, dependencies, and system specifications are
satisfied.
-	 Consider both the computational resources and the speed of data transfer between nodes when assigning tasks, as data
movement and transfer delays directly impact total makespan.
-	 Maximize parallel execution of independent tasks whenever node resources allow.
-	 Important: If a task depends on one or more other tasks that ran on different nodes, the output data transfer for each
dependency may begin only after the producing (parent) task has fully completed. The dependent task may not start until all required
data from its dependencies has arrived at its assigned node.
-	 Data transfer delay must always be added if a task’s dependency ran on a different node. Use the formula:
-	 data transfer delay (in hours) = data size (GB) / receiving node’s data transfer rate (Gbps)
-	 For example: if a 20GB output must be sent to a node with 10 Gbps, the transfer takes 2 hours.
-	 Multi-feature nodes (e.g., GPU, SSD) should be reserved for tasks that need those features; avoid assigning tasks to such
nodes if not necessary.
-	 Provide step-by-step reasoning for each assignment, including explicit explanations for any trade-offs or data transfer
considerations.
-	 (Optional) Generate code (Python or pseudocode) that would automate or verify the final schedule.

System Nodes
-	 NodeA: 32 CPUs, 128 GB RAM, Features: [CPU, GPU], Data Transfer Rate: 10 Gbps
-	 NodeB: 64 CPUs, 256 GB RAM, Features: [CPU], Data Transfer Rate: 5 Gbps
-	 NodeC: 16 CPUs, 64 GB RAM, Features: [CPU, SSD], Data Transfer Rate: 2 Gbps

Workload Tasks
-	 Task1: Needs 8 CPUs, 32 GB RAM, Features: [GPU], Duration: 3h, Data Output: 10GB, Dependencies: []
-	 Task2: Needs 4 CPUs, 16 GB RAM, Features: [CPU], Duration: 2h, Data Output: 5GB, Dependencies: [Task1]
-	 Task3: Needs 16 CPUs, 64 GB RAM, Features: [CPU, SSD], Duration: 5h, Data Output: 20GB, Dependencies: []
-	 Task4: Needs 8 CPUs, 32 GB RAM, Features: [CPU], Duration: 4h, Data Output: 15GB, Dependencies: [Task2, Task3]

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

006

Robotics & Automation Engineering Journal

Objectives And Constraints
-	 Minimize total makespan (overall time to complete all tasks), considering both computation and any required data transfer
delays.
-	 Do not exceed any node’s CPU or RAM capacity at any time.
-	 Each task must run entirely on a single node with all required features.
-	 Tasks may only start after all dependencies are finished and any required data is transferred and present on the assigned
node.
-	 If a dependent task is assigned to a different node from its parent(s), the data transfer delay must be added before it can
begin.
-	 Provide explanations for your assignments, especially where your mapping minimizes data transfer time or resource
contention.
 (Optional) Provide code (Python or pseudocode) to validate or automate the schedule.

Expected Output Format
For each task, output a table with:
-	 Task ID
-	 Assigned Node
-	 Start Time (considering dependencies and any transfer)
-	 End Time
-	 If data transfer was needed (yes/no, specify time and data amount)
-	 Short explanation
After the table, provide:
-	 Overall schedule make span
-	 Any generated code (if produced)
-	 Any issues or assumptions you made

(Optional) If possible, also provide an alternative schedule with a less efficient mapping and its and its resulting makespan for
comparison.

Analysis of Make span: Best- and Worst-Case Scenarios

The make span, i.e., the total time to complete all tasks, is
determined by both the assignment of tasks to nodes and the
necessary data transfers dictated by task dependencies. To
guarantee the correctness of the baseline solution, we provide
a step-by-step, exhaustive proof examining all plausible node
assignments for each task in the benchmark scenario. This analysis
takes into account every combination of resource constraints,
feature requirements, task dependencies, and mandatory data
transfer delays.

All Plausible Assignments:

1.	 Task2 on Node A (best-case):

•	 Task1 on Node A: 0–3h

•	 Task2 on Node A: 3–5h (no transfer)

•	 Task3 on Node C: 0–5h

•	 Task4 on Node A: Waits for Task2 (5h) and Task3’s out-
put from Node C:

–	 20GB / 10Gbps = 2h; `ready at 7h. Starts at 7h, ends at
11h.

2.	 Task2 on Node B:

•	 Task2 requires Task1’s output:

–	 10GB / 5Gbps = 2h. Starts at 5h, ends at 7h.

•	 Task4 on Node B:

–	 Waits for Task2 (7h) and Task3’s output from Node C:

	 20GB / 5Gbps = 4h (ready at 9h). Starts at 9h, ends at
13h.

•	 Task4 on NodeA:

–	 Needs Task2 output from NodeB:

	 5GB / 10Gbps = 0.5h (ready at 7.5h), Task3 output as
above (ready at 7h). Starts at 7.5h, ends at 11.5h.

•	 Task4 on NodeC:

–	 Needs Task2 output from NodeB:

	 5GB / 2Gbps = 2.5h (ready at 9.5h), Task3 local (5h).
Starts at 9.5h, ends at 13.5h.

3.	 Task2 on NodeC:

•	 Task2 requires Task1’s output:

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

007

Robotics & Automation Engineering Journal

–	 10GB / 2Gbps = 5h. Starts at 8h, ends at 10h.

•	 Task4 on NodeC:

–	 Waits for Task2 (10h), Task3 local (5h). Starts at 10h,
ends at 14h.

•	 Task4 on NodeA:

–	 Needs Task2 output:

	 5GB / 10Gbps = 0.5h (ready at 10.5h), Task3 output:

	 20GB / 10Gbps = 2h (ready at 7h). Starts at 10.5h, ends
at 14.5h.

•	 Task4 on NodeB:

–	 Needs Task2 output:

	 5GB / 5Gbps = 1h (ready at 11h), Task3 output:

	 20GB / 5Gbps = 4h (ready at 9h). Starts at 11h, ends at
15h (Table 1).

	Optimal Solution: In every scenario, the minimal possible
makespan is 11 hours. This step-by-step analysis ensures
the validity and reproducibility of our baseline, and sets
a transparent standard for evaluating the scheduling
methods.

Table 1: Summary: Earliest possible Task4 completion for all valid Task2 and Task4 node assignments.

Task2 Node Task4 Node Task4 Start (h) Task4 End (h) Makespan (h)

NodeA NodeA 7 11 11

NodeB NodeA 7.5 11.5 11.5

NodeB NodeB 9 13 13

NodeC NodeC 10 14 14

NodeC NodeA 10.5 14.5 14.5

NodeC NodeB 11 15 15

Explanation of Baseline Schedule and Makespan:

The scheduling graph and (Table 2) illustrate the optimal
solution for our benchmark scenario. Tasks are mapped to
nodes according to their feature requirements and re- source
constraints. Both Task1 (GPU) and Task3 (SSD) begin in
parallel on NodeA and NodeC, respectively. Task2, which depends
on Task1, is co-located on NodeA to eliminate unnecessary data

transfer. After both Task2 and Task3 complete, Task4 can
begin only when all dependencies and required data are available
on its assigned node (NodeA). Since Task3’s output must be
transferred from NodeC to NodeA (20GB over a 10Gbps link,
resulting in a 2-hour delay), Task4’s start is determined by the
completion of data transfer rather than the earlier completion
of Task2 (Figure 5).

Table 2: Summary of optimal schedule for the benchmark scenario (critical path method).

Task Assigned Node Start (h) End (h) Data Transfer Explanation

Task1 NodeA 0 3 None Only NodeA has GPU

Task2 NodeA 3 5 None Follows Task1, no transfer needed

Task3 NodeC 0 5 None Only NodeC has SSD

Task4 NodeA 7 11 20GB from NodeC (2h
over 10Gbps) Waits for data from Task3 via network

Figure 5: DAG for the sample HPC workflow.

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

008

Robotics & Automation Engineering Journal

This approach makes explicit the importance of both
parallel task execution and minimizing data transfer delays in
heterogeneous environments. The resulting critical path-Task1
→ Task2 → (wait for Task3 data) → Task4-yields a minimal
makespan of 11 hours. This solution serves as a robust baseline
for evaluating automated schedulers or LLM-based workload
mapping approaches.

Results are parsed and compared for feasibility, optimality,
and explanation quality.

Findings and Discussion

Our preliminary tests with scenarios of moderate size
(<10 tasks, <5 nodes) show that LLMs such as GPT-4 and
Claude can generate feasible job-to-node assignments and
produce human-like, explainable reasoning for their choices. In
many cases, LLM- generated schedules respect basic constraints
(resource limits, dependencies) and approximate heuristic
solutions.

However, several limitations are evident:

•	 Scaling: LLMs struggle with long, highly structured
prompts as the scenario size grows, sometimes leading to
incomplete or infeasible solutions.

•	 Constraint Adherence: Strict, non-negotiable con-
straints (e.g., data transfer delay, resource exclusivity)
may be violated unless explicitly emphasized and tested.

•	 Optimality: MILP solvers consistently find lower
makespan solutions, particularly for complex dependencies
and high resource utilization. LLMs tend toward “greedy” or
“naive” allocations unless specifically guided.

•	 Explainability: LLMs excel at providing explanations for
scheduling choices, an area where classical solvers are
lacking.

Notably, LLMs may be best positioned as co-pilots
or advisors-generating candidate solutions, explaining
heuristics, or translating human objectives into machine-usable
constraints-rather than replacing solvers in mission-critical
optimization.

Discussion of Model Benchmarking Results

Table 3 summarizes the comparative performance of state-
of-the-art large language mod- els (LLMs) and code-oriented AI
systems on the canonical HPC scheduling scenario. We assess the
results based on what it produced denoted by + (correct), 0
(not given), - (wrong), NA (not able). Several key trends and
insights emerge from this evaluation:

Table 3: Comprehensive qualitative assessment of LLM scheduling and reasoning on HPC mapping benchmarks. Columns: Makespan (total
completion time), Task Through- put (successful task completion), Mapping/Node Utilization (efficient, correct use of resources), Constraint
Adherence (resource, dependency, and transfer constraints), Reasoning (step-by-step logic), Explanation (clarity), Code (artifact produced), So-
lution Explainability (transparency and interpretability of solution).

Model Makespan Task
Throughput

Mapping /
Node Util.

Constraint
Adherence Reasoning Explanation Code Solution

Explainability

Llama 3.1 8B
Instruct 14h + 0 0 0 + 0 +

Gemma 3 27B
Instruct 9h + 0 0 0 + + +

InternVL2.5 8B
MPO 19h + 0 0 0 + + +

Qwen 3 32B 11.5h + + + + + 0 +

DeepSeek R1 11h + + + + + 0 +

Mistral Large
Instruct 11h + + + + + + +

Codestral 22B 9h + 0 0 0 + + +

o3 11h + + + + + + +

o3-mini 11h + + + + + + +

GPT-4o 12.5h + + + + + + +

GPT-4.1 11.5h + + + + + + +

GPT-4.1 Mini 9h + + 0 0 + + +

•	 Task Throughput and Feasibility: All models success-
fully generated schedules that mapped every task to an
available node, demonstrating a strong capacity for pro-
ducing valid, feasible solutions in moderately sized, fea-
ture-rich HPC environments.

•	 Constraint Adherence and Make span Accuracy : The
most prominent area of differentiation between mod-
els was their ability to enforce strict resource, dependency,
and especially data transfer constraints. Only a subset
of models-such as o3, o3-mini, DeepSeek R1, Qwen 3 32B,

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

009

Robotics & Automation Engineering Journal

and Mistral Large Instruct-consistently calculated correct
transfer delays and critical path timings, producing the
minimal or near-minimal makespan (11–11.5 hours). Many
others, including Llama 3.1 8B, Gemma 3 27B, Codestral 22B,
and GPT-4.1 Mini, underestimated makespan by overlooking
inter-node data movement, while others (e.g., InternVL2.5 8B
MPO) overestimated by serializing independent tasks.

•	 Mapping and Node Utilization: High-performing mod-
els leveraged resource locality and feature matching, co-lo-
cating dependent tasks where possible and as- signing tasks
requiring special hardware (GPU, SSD) to the appropriate
nodes. Suboptimal models sometimes failed to minimize data
transfers or maximize par- allelism, which directly impacted
solution quality.

•	 Reasoning, Explanation, and Code Generation: Almost
all advanced models offered step-by-step rationales and
transparent scheduling logic, and many (including o3, GPT-
4o, Codestral 22B, and Mistral Large Instruct) generated
readable code for schedule validation. This growing ex-

plainability makes LLMs increasingly valuable for human-
in-the-loop and educational use cases.

•	 Explainability of Solutions: Even where logical errors
occurred, most models presented their reasoning in a trans-
parent manner, aiding diagnosis and benchmarking. This
suggests that LLMs are already strong as “AI co-pilots” and
explainers, even if their autonomous optimization skills
are not yet universally reliable.

•	 Summary: These findings demonstrate that while LLMs are
not yet a replacement for classical optimization methods
in strict, mission-critical scheduling, the leading models
can now approach or match the best-known solutions
for moderately complex scenar- ios. Their outputs are
interpretable, often auditable via code, and can form a
powerful basis for hybrid scheduling pipelines and operator
support tools. Nonetheless, rigorous prompt engineering,
constraint validation, and continuous benchmarking remain
essential to ensure the correctness and reliability of LLM-
generated schedules.

Example Outputs

Select snippets of interesting results.

Llmama 3.1 8B Capturing Features of System and the Tasks

Define the graph G = nx.DiGraph()

Add nodes and edges
G.add node (” NodeA”, cpus=32, ram=128, features= [” CPU”,” GPU”], data rate=10) G.add node (” NodeB”, cpus=64, ram=256, features=
[” CPU”], data rate=5)
G.add node (” NodeC”, cpus=16, ram=64, features= [” CPU”,” SSD”], data rate=2)

G.add edge (” NodeA”,” Node A”, task=” Task1”, cpus=8, ram=32, features= [” GPU”], duration=3, data=10)
G.add edge (” Node A”,” Node A”, task=” Task2”, cpus=4, ram=16, features= [” CPU”], duration=2, data=5)
G.add edge (” Node”,” NodeB”, task=” Task3”, cpus=16, ram=64, features= [” CPU”,” SSD”], duration=5, data=20)

First, assign Task1 to NodeA. That uses 8 CPUs and 32
GB RAM. NodeA has 32 CPUs and 128 GB, so after Task1,
remaining is 24 CPUs and 96 GB. That’s fine.

Task3 needs SSD, so NodeC. NodeC has 16 CPUs and
64 GB. Task3 uses 16 CPUs and 64 GB, so it fills up NodeC
completely. So Task3 is on NodeC.

Conclusion and Future Work

Conclusion

This benchmark evaluation demonstrates both the promise
and the current limitations of Large Language Models (LLMs)
in high-performance computing (HPC) workload map- ping
and scheduling. Many advanced LLMs, including GPT-4o,
o3, DeepSeek R1, Qwen 3 32B, and Mistral Large Instruct,
are now able to generate feasible, interpretable, and near-

optimal scheduling solutions for moderately sized, feature-
rich scenarios. Nonetheless, significant challenges remain.
In particular, strict constraint satisfaction is not always
achieved, as many models underestimated or misapplied data
transfer delays and critical path logic, which resulted in overly
optimistic makespans or suboptimal parallelism.

Furthermore, as the scale and complexity of dependency
graphs increase, some models either resorted to excessive
serialization-overestimating makespan-or failed to fully
exploit available parallelism. While most leading models now
provide stepwise rationales and readable code, systematic and
automated assessment of solution explainability and error
detection remains an area for further development. These
findings suggest that, while LLMs show considerable promise,
additional advances are needed to fully realize their potential
for robust and efficient HPC scheduling.

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

0010

Robotics & Automation Engineering Journal

Future Work

This initial benchmarking study identifies several
promising directions for advancing the integration of large
language models (LLMs) into high-performance computing
(HPC) scheduling workflows. First, future research should
explore the fine-tuning of LLMs using realistic scheduling
traces and explicit constraint rules to improve their reliability
and domain alignment. The development of hybrid
architectures, in which LLMs generate initial scheduling
blueprints subsequently refined by exact solvers such as
mixed integer linear programming (MILP) or by learning-
based agents (e.g., reinforcement learning), also represents a
promising avenue for achieving both efficiency and optimality.
In addition, there is a clear need for systematic, large-scale
benchmarking on both real-world and synthetic HPC workloads,
supported by standardized prompts and reference solutions,
to facilitate objective comparison and progress tracking across
the community.

Finally, the creation of automated tools for scoring,
validating, and providing feed- back on the explainability and
correctness of LLM-generated schedules will be critical for
practical adoption. Ultimately, these findings support a vision
in which LLMs are not standalone replacements for established
scheduling solvers, but rather serve as explainers, translators,
and heuristic generators-working in concert with classical
optimization techniques and human experts to advance the
state of HPC workflow optimization.

Acknowledgement

This work was supported by the Faculty of Mathematics
and Computer Science, University of Gottingen. The authors
thank the HPC and AI research community for inspiration. The
authors sincerely thank the Georg-August-Universität G¨ottingen
(GWDG, Germany) for their valuable support. We also thank
for the constructive feedback from our peers. This research
is funded by the EU KISSKI Project under under grant number
01-S22093A (Forderkennzeichen).

References
1.	 Deelman E, Dongarra J, Hendrickson B, Randles A, Reed D, et al. (2025)

High-performance computing at a crossroads. Science 387(6736):
829-831.

2.	 Brodtkorb AR, Dykan C, Hagen TR, Hjelmervik JM, Storaasli OO
(2010) State-of-the-art in heterogeneous computing. Scientific
Programming 18(1): 1-33.

3.	 Sharma AK, Kunkel J (2025) A Review of Tools and Techniques for
Optimization of Workload Mapping and Scheduling in Heterogeneous
HPC System. arXiv preprint.

4.	 Topcuoglu H, Hariri H, Wu M-Y (2002) Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
transactions on parallel and distributed systems 13(3): 260-274.

5.	 Adhikari M, Amgoth T, Srirama SN (2019) A survey on scheduling
strategies for workflows in cloud environment and emerging
trends. ACM Computing Surveys 52(4): 1-36.

6.	 Kwok YK, Ahmad I (1999) Static scheduling algorithms for
allocating directed task graphs to multiprocessors. ACM Computing
Surveys (CSUR) 31(4): 406-471.

7.	 Sharma AK, Boehme C, Gelß P, Yahyapour R, Kunkel J (2025)
Workflow-Driven Modeling for the Compute Continuum: An
Optimization Approach to Automated System and Workload
Scheduling. arXiv preprint.

8.	 Sharma AK, Kunkel J (2025) GrapheonRL: A Graph Neural
Network and Rein- forcement Learning Framework for Constraint
and Data-Aware Workflow Mapping and Scheduling in Heterogeneous
HPC Systems. arXiv preprint.

9.	 Tobita T, Kasahara H (2002) A standard task graph set for fair
evaluation of multi- processor scheduling algorithms. Journal of
Scheduling 5(5): 379-394.

10.	Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, et al. (2013)
A survey on resource allocation in high performance distributed
computing systems. Parallel Computing 39(11): 709-736.

11.	Grinsztajn N, Beaumont O, Jeannot E, Preux P (2021) Readys: A
reinforcement learning based strategy for heterogeneous dynamic
scheduling. IEEE International Conference on Cluster Computing
(CLUSTER) pp.70-81.

12.	Cui B, Ramesh T, Hernandez O, Zhou K (2025) Do large language
models understand performance optimization? arXiv preprint.

13.	Ye Z, Geo W, Hu Q, Sun P, Wang X, et al. (2024) Deep learning
workload scheduling in gpu datacenters: A survey. ACM Computing
Surveys 56(6): 1-38.

14.	Nichols D, Marathe A, Menon H, Gamblin T, Bhatele A (2024) Hpc-coder:
Modeling parallel programs using large language models. ISC High
Performance 2024 Research Paper Proceedings (39th International
Conference) pp.1-12.

15.	(2025) GWDG Chat AI Services Available Models. Documentation
for HPC.

How to cite this article: Aasish Kumar Sharma and Julian Kunkel*. Evaluating Large Language Models for Workload Mapping and Scheduling in
Heterogeneous HPC Systems. Robot Autom Eng J. 2025; 6(5): 555696. DOI: 10.19080/RAEJ.2025.06.555696

0011

Robotics & Automation Engineering Journal

Your next submission with Juniper Publishers
 will reach you the below assets

•	 Quality Editorial service
•	 Swift Peer Review
•	 Reprints availability
•	 E-prints Service
•	 Manuscript Podcast for convenient understanding
•	 Global attainment for your research
•	 Manuscript accessibility in different formats

 (Pdf, E-pub, Full Text, Audio)
•	 Unceasing customer service

 Track the below URL for one-step submission
 https://juniperpublishers.com/online-submission.php

This work is licensed under Creative
Commons Attribution 4.0 License
DOI: 10.19080/RAEJ.2025.06.555696

