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Abstract 

The problem of estimating the Robot path when covering closed trajectories using only the wheels odometry information is met in indoor 
low-cost robotic applications. Random and systematic errors related to the measured angle accuracy, deviations from the desired path and 
wheel radius in robot turns, introduced significant errors in the process of estimating the actual path. In this paper the autocorrelation function 
is used for accurate estimation of the path periodicity and to reconstruct the robot path. Real-life experiments using a real robot showed minor 
differences between the estimated and the predicted path. 
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Introduction 

Indoor robotics is a recently developed research area which 
has entered the industry with quite a rapid rate. The reason for 
this is the huge amount of attention that wireless sensor networks 
[1] and autonomous vehicles [2] have drawn. An intuitive problem 
that has arisen is the precise localization of the robots, due to 
the small size of the indoor environment that they act in. Many 
techniques have been proposed for indoor localization but the 
most active is the one based on Wi-Fi [3].

Another essential parameter for localization is the knowledge of 
the robot’s environment (map). SLAM constructs the environment 
structure, a two- or three-dimensional map synchronously with 
the estimation of the robot’s position while moving in it. A typical 
SLAM system consists of two main components: the front-end 
process associates the sensor’s data to the partially constructed 
map distances i.e., those that have been already observed, while 
the back-end module completes new parts of the map by applying 
optimization techniques [4, 5]. The so-called graph-SLAM [6], 
connects the two modules through a factor graph [7]. Front-end 
module accounts for the building of the factor graph based on all 
the available information and afterwards, the back-end module,  

 
translates this graph into an optimization problem to perform the 
optimal estimation of the final map that this graph represents. 

The formulation of the optimization problem was first 
considered by [8, 9] who set the bases for modeling the spatial 
relationships of the problem and solved it optimally. The enhanced 
optimization methods based on maximum likelihood estimation 
are [10-14], which in contrast to Kalman filters does not need a 
model that describes the system under consideration. Some other 
techniques based on EKF or windowing [15-16] and nonlinear 
filtering or smoothing [17-18] have been applied.

In the case where the robot performs a repeated trajectory, 
i.e., line-following in a close path, one of the front-end data 
association tasks is the loop closure. Loop closure is a mechanism 
that eliminates the accumulative uncertainty of the robot’s pose 
by recognizing areas that have already been visited [19]. This 
problem has been solved by many researchers [20-22] by adding 
some unique points throughout the path and detecting them using 
cameras or other distance measurement systems, such as lidar, 
ultrasonic, phototransistors sensors [23].
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The estimation of a robot position using only odometry 
information i.e., wheels’ angle as a function of time, is a difficult 
task due to the errors introduced by the sensor’s accuracy, 
deviations from the desired path and the variability of the 
wheel’s radius during robot movements. In the special case where 
the robot performs multiple loops in the same path, the fact of 
repeated passage from the same positions in space can be used to 
decrease the influence of both systematic and stochastic errors in 
the process of estimating the robot position. As shown in figure 
1, the estimated trajectory using the raw odometry data, results 
in the increment of the difference between the actual and the 
real robot position at each step [24, 25]. The resulting trajectory 
is a gradually shifted repetition of the actual closed path that the 
robot follows [26]. So, the main problem is to derive a method to 
correct the unbounded accumulated error [30] [35] which causes 
this deviation from the real path. 

According to [27] a piecewise linear function of the 
accumulative wheel angle displacement can be used for the 
detection of the loop closure points by creating an error matrix 
of the mean distance of some linearly distributed points for every 
node of the graph and finding local minima of this error matrix. 
Afterwards, the nodes that correspond to detected loop closures 

are connected with an edge of the graph and the Levenberg-
Marquardt optimization algorithm [12] is applied for the 
estimation of the final map.

This article was inspired by [27] improving the estimation 
accuracy of the loop closure period. Instead of using a piecewise 
linear function for the detection of the loop closing constraints, 
the proposed method faces this problem from a signal processing 
point of view. The implemented idea is that, if the periodicity of 
the robot’s trajectory is found, it can be used to create loop closing 
points and will enable the merging of all the recurrent trajectories 
around the main map. 

Materials 

The experimental set up consists of a two wheeled EV3 
robot manufactured by LEGO, equipped with two color sensors. 
The wheel radius was 2cm, and the distance between the two 
wheels was 13.5cm. A simple line following. a sensor’s acquisition 
module and a Bluetooth data transfer process was implemented, 
downloaded and executed in the robot processor unit as two 
independent tasks.  In (Figure 1) the visual line embedded on the 
floor and the actual distances are shown. 

Figure 1: Two-wheeled robot (black shape) and the geometrical representation of the model’s parameters at each time step. The circle is 
the center of the robot. 

The transmitted record acquired by the robot sensors is 
constituted by six fields:  Increasing measurement number, robot 
time in ms, current left wheel angle in degrees, current right 
wheel angle in degrees. A typical example of the data sequence 
created by the EV3 is: “6,50747,447, 448”. A serial Bluetooth 
data exchange protocol was implemented between the EV3 and a 

Raspberry Pi 3 model B+ single board computer performing real-
time data transmission at a rate of 3-4 records per second. The 
data set created to evaluate the proposed method, consists of 10 
Files, including 7200 measurements and acquired in a time period 
of 31 minutes.
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Methods 

If wheel radius is r and the distance between the two wheels is 
L, the path covered by robot’s right wheel, , is given by the relation 
,  if  the current right wheel angle is  . A similar equation estimates 
the corresponding path covered by the left wheel, i.e.,  .

At every time sample k, the wheels distance between the 
current and the previous sample can be derived by 

1K K Kright right rightD D D
−

∆ = −       

1K K Kleft left leftD D D
−

∆ = −

Taking into account the robot model of figure 2, the robot’s 
center position, in the 2-D plane with coordinates  at each time 
sample, can be estimated by, 
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Based on this model the estimated trajectory is shown in 
figures 2, 3. 

According to Rottmann, N. et al. [27]. The path estimation 
process is splitted into a set of sequentially connected modules. 
Initially, a path segmentation module is used to cluster the 
individual

path points retrieved from the odometry data into straight line 
segments. In our implementation the complete set of data points 
derived by eq. (1) or (2) (these are equations) has been used to 
build the path points. In the adopted method the created map is 
more accurate, and the additional computational complexity is 
not important in our approach because the mapping estimator is 
an offline process. 

Figure 2: Robot’s ground truth map.

Figure 3: Robot trajectory estimated from wheel’s odometry data.
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Subsequently, the loop closure detection module undertakes 
to search for poses with similar shaped neighborhoods in order 
to find vertices which can be matched onto each other. For these 
matched vertices a connection in the pose graph is added. For this 
process, a piecewise linear function is created which accumulates 
the difference of the wheel’s angle between two successive 
positions of the robot. An error matrix measures the distance 
between the shapes of the neighborhood positions using the 
introduced piecewise orientation function. In our approach, the 
period of the robot’s trajectory is used to detect similar shaped 
neighborhoods in order to detect vertices which can be matched 
onto each other. For the estimation of the robot’s trajectory period, 
only the difference of the wheel’s angle between two successive 
robot positions is used 

1k k kright right rightθ θ θ
−

∆ = −              

1k k kleft left leftθ θ θ
−

∆ = −

Among the digital signal processing methods that detect signal 
periodicity, the autocorrelation method [28] is robust in random 
noise but sensitive to DC noise. In this article the periodicity of the 
close loop trajectory is estimated by the autocorrelation method 
of the wheel’s angle difference

right right m kk mXX m rightR θ θ
−

∞
=−∞∆= ∆∑          

left left m kk mXX m leftR θ θ
−

∞
=−∞∆= ∆∑

Before autocorrelation is used, the mean value of the signal 
must be subtracted to increase the variance of the autocorrelation 
function (Figure 4). enhancing also the detection accuracy of the 
desired maximum points, as shown in figure 5. It is well known 
that the signal periodicity can be detected at the local maxima of 
the autocorrelation function. 

Figure 4: 
k kright leftandθ θ∆ ∆ per sample subtracting the mean value of the wheel’s angle differences.

Figure 5:  Normalized autocorrelation
right leftk kXX XXR andR .
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When the loop closure detection module is completed, the 
resulting graph, which consists of the sequential connection of the 
nodes that represent the states of the robot and the connection 
of the nodes that represent the matched vertices, is subjected 
to pose graph optimization. The optimization problem that this 
module solves is based on the minimization of a weighted sum of 
the measurement’s errors, where the covariance matrix is derived 
by the robot’s model. 

The maximum value observed at the center of the function 
corresponds to the energy of the signal, which is equal tο one, due 
to normalization. The periodicity of the considered signal for each 
wheel is equal to the sample time that the first maximum of the 
autocorrelation function is met, excluding the one at the center of 
the function.

The detection of the signal period signifies that the sample 

at which the period was completed is a new measurement 
of the robot’s starting position. According to this, these two 
different states that occur in the estimation map represent the 
same position. Therefore, these vertices are matched by adding 
a connection in the pose graph between their corresponding 
nodes, as can be seen in figure 6. Following this procedure, every 
upcoming node can be connected with the following node starting 
from the first and when an integer multiple of the period sample is 
reached a third layer of connections can be added to the first node. 
In figure 6, only twelve of those connections are drawn in order 
to illustrate the main idea clearly. Sequentially, the pose graph 
optimization problem was created according to [27] and [12] 
which led to the final map of of Fig. 7 (red trajectory)  by applying 
the Levenberg–Marquardt algorithm for solving the weighted 
nonlinear least squares optimization problem.

Figure 6: Loop closure constraint (black line).

Figure 7: Corrected path after loop closure exploitation from the back end.

Results and Discussion 

Appling the above methodology, after normalization, on both 
the left and the right wheel’s angle displacement, lead to the 
number of samples at which the path of the robot is repeated, 
number of samples = 234. This can be verified by the estimation 
of the period, period = 59026ms, which is approximately equal 
to number of samples * sampling time = 234 *250 ms = 58s. 
As shown in figure 5, the local maximum values of the function 
that correspond to the loop closure points are conspicuous and 
integer multiple of 234. Moreover, there is no need to apply more 
sophisticated periodicity estimation algorithms due to the high 

accuracy of the results, shown in table 1 & 2. Finally, the error 
from the ground truth has decreased due to the incorporation 
of the loop closure constraints in the optimization problem of 
the back-end mechanism. This improvement can be seen in the 
comparison of the pure odometry-based map (blue trajectory in 
map (blue trajectory in Fig. 7) with the optimization-based map 
map (red trajectory in Fig. 7).  Given the loop closing constraints, 
an optimization problem can be formulated according to [27]. 
which can lead to the map estimation estimation. Fig. 6, illustrates  
the points that correspond to the same position when one loop is 
completed. 
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Table 1: Local maxima of right wheel’s normalized autocorrelation function for 1500 measurements.

left kXXR 1 0.7202 0.5664 0.4076 0.2786 0.139

k 0 234 468 702 936 1170

Table 2: Local maxima of right wheel’s normalized autocorrelation function for 1500 measurements.

right kXXR 1 0.7069 0.5529 0.3951 0.2716 0.136

k  0 234 468 702 936 1170

Future research

The direction of this work will be to decrease the estimation 
error for both indoor and outdoor localization applications. This 
will be achieved by equipping the wheeled robot with more 
sensors which will provide more information to build the SLAM 
optimization problem. More precisely, acoustic, and light sensors 
can be used to measure the distance of the nearby objects and the 
brightness variation of the ground. To incorporate these signals, 
some fusion algorithms will be implemented. Additionally, 
computational models can be combined with the sensors, 
potentially leading to a more accurate and robust mapping of 
the robot’s trajectory. Computational models behave as virtual 
sensors providing even more information about the system’s 
states [29].

Conclusion 

This article proposes a method to estimate a closed path 
from multiple passes of a robotic vehicle using only odometry 
information from wheel angle. The detection on the signal’s 
period was precise and can potentially lead to the increment of 
the estimated map accuracy. This technique will be incorporated 
in cases where accurate robot position is required in low-cost 
indoor robot implementations.
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