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Abstract

Proposing new mutation strategies and adjusting control parameters to improve the optimization performance of differential evolution (DE) are considered a vital research study. Therefore, in this paper, a short review of the most significant contributions on parameter adaptation and developed mutation strategies is presented.
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Introduction

Differential Evolution (DE), proposed by Storn and Price [1,2] is a stochastic population-based search method. It exhibits excellent capability in solving a wide range of optimization problems with different characteristics from several fields and many real-world application problems [3]. Similar to all other Evolutionary algorithms (EAs), the evolutionary process of DE uses mutations, crossover and selection operators at each generation to reach the global optimum. Besides, it is one of the most efficient evolutionary algorithms (EAs) currently in use. In DE, each individual in the population is called target vector. Mutation is used to generate a mutant vector, which perturbs a target vector using the difference vector of other individuals in the population. After that, crossover operation generates the trial vector by combining the parameters of the mutation vector with the parameters of a parent vector selected from the population. Finally, according to the fitness value and selection operation determines which of the vectors should be chosen for the next generation by implementing a one-to-one completion between the generated trail vectors and the corresponding parent vectors [4,5]. The performance of DE basically depends on the mutation strategy, the crossover operator. Besides, The intrinsic control parameters (population size NP, scaling factor F, the crossover rate CR) play a vital role in balancing the diversity of population and convergence speed of the algorithm. The advantages are simplicity of implementation, reliable, speed and robustness [3]. Thus, it has been widely applied in solving many real-world applications of science and engineering, such as {0-1} Knapsack Problem [6], financial markets dynamic modeling [7], feature selection [8], admission capacity planning higher education [9,10] , and solar energy [11], for more applications, interested readers can refer to [12]. However, DE has many weaknesses, as all other evolutionary search techniques do w.r.t the NFL theorem. Generally, DE has a good global exploration ability that can reach the region of global optimum, but it is slow at exploitation of the solution [13]. Additionally, the parameters of DE are problem dependent and it is difficult to adjust them for different problems. Moreover, DE performance decreases as search space dimensionality increases [14]. Finally, the performance of DE deteriorates significantly when the problems of premature convergence and/or stagnation occur [14,15]. Consequently, researchers have suggested many techniques to improve the basic DE. From the literature [12,16,17], these proposed modifications, improvements and developments on DE focus on adjusting control parameters in an adaptive or self-adaptive manner while there are a few attempts in developing new mutations rule.

Differential Evolution

This section provides a brief summary of the basic Differential Evolution (DE) algorithm. In simple DE, generally known as DE/rand/1/bin [2,18], an initial random population, denoted by P, consists of NP individual. Each individual is represented by the vector, = (x1,i,x2,ixD,i) where D is the number of dimensions in solution space. Since the population will be varied with the running of evolutionary process, the generation times in DE are expressed by G = 0,I,...,Gmax , where is the maximal time of generations. For the ith individual of P at the G generation, it is denoted by xGi = (xG1,i, xG2,i,..., xGD,i) . The lower and upper bounds in each dimension of search space are respectively recorded by xL = (x1,L, x2,L,..., xD,L) and xu = (xl, u, x2,u,..., xD,u ). The initial population P0is randomly generated according to a uniform distribution within the lower and upper boundaries (xL ,xu). After initialization, these individuals are evolved by DE operators (mutation and crossover) to generate a trial vector. A comparison between the parent and its trial vector is then done to select the vector which should survive to the next generation [16,19]. DE steps are discussed below:

Initialization

In order to establish a starting point for the optimization process, an initial population P0 must be created. Typically, each jth component (j = l,2,.....	,D) of the ith individuals (i = 1,2,	...., NP) in the P0 is obtained as follow:
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Where, rand (0,1) returns a uniformly distributed random number in [0,1].

Mutation

At generation G, for each target vector, a mutant vector is generated according to the following:
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With randomly chosen indices r1r2,r3∈{1,2,...,NP}. is a real number to control the amplification of the difference vector (xGr2 -xGr3) . According to Storn and Price [2], the range of is in (0,2). In this work, If a component of a mutant vector violates search space, then the value of this component is generated a new using (1). The other most frequently used mutations strategies are
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The indices r1, r2, r3, r4, r5 are mutually different integers randomly generated within the range (1,2,...,NP), which are also different from the index . These indices are randomly generated once for each mutant vector. The scale factor is a positive control parameter for scaling the difference vector. xGbest is the best individual vector with the best fitness value in the population at generation G.

Cross Over

There are two main crossover types, binomial and exponential. We here elaborate the binomial crossover. In the binomial crossover, the target vector is mixed with the mutated vector, using the following scheme, to yield the trial vector.
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Where, (i ∈[1, NP] and j ∈ [1,D]) is a uniformly distributed random number in (0,1) CR ∈ [0,1] , called the crossover rate that controls how many components are inherited from the mutant vector jrand , is a uniformly distributed random integer in (1,D) that makes sure at least one component of trial vector is inherited from the mutant vector.

Selection

DE adapts a greedy selection strategy. If and only if the trial vector uGi yields as good as or a better fitness function value than xGi , then uGi is set to xG+1i . Otherwise, the old vector xGi is retained. The selection scheme is as follows (for a minimization problem):
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A detailed description of standard DE algorithm is given in Figure 1.
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Figure 1:      Description of standard DE algorithm. Rand [0,1] is a function that returns a real number between 0 and 1.



Rand int (min, max) is a function that returns an integer number between min and max.

NP, Gmax, CR and F are user-defined parameters. D is the dimensionality of the problem.

Short Review

Virtually, the performance of the canonical DE algorithm mainly depends on the chosen mutation/crossover strategies and the associated control parameters. Moreover, due to DE limitations as previously aforementioned in introduction section, during the past 15 years, many researchers have been working on the improvement of DE. Thus, many researchers have proposed novel techniques to overcome its problems and improve its performance [16]. In general, According to adjusting control parameters rule used, these approaches can be divided into two main groups: The first group focuses on pure random selection of parameter values from random distributions such as the uniform distribution, normal distribution, and Cauchy distribution. Alternatively, the parameters values are changing with the progress of generations using increasing/decreasing linear or nonlinear deterministic function such as. The second group focuses on adjusting control parameters in an adaptive or self-adaptive manner. A brief overview of these algorithms is proposed in this section. Firstly, many trial-and-errors experiments have been conducted to adjust the control parameters. Storn and Price [1] suggested that NP (population size) between 5D and 10D and 0.5 as a good initial value of F (mutation scaling factor). The effective value of F usually lies in a range between 0.4 and 1. The CR (crossover rate) is an initial good choice of CR=0.1; however, since a large CR often accelerates convergence, it is appropriate to first try CR as 0.9 or 1 in order to check if a quick solution is possible. Gamperle at al. [20] recommended that a good choice for NP is between 3D and 8D, with F=0.6 and CR lies in (0.3, 0.9). However, Rokkonen et al. [21] concluded that F=0.9 is a good compromise between convergence speed and convergence rate. Additionally, CR depends on the nature of the problem, so CR with a value between 0.9 and 1 is suitable for non-separable and multimodal objective functions, while a value of CR between 0 and 0.2 when the objective function is separable. On the other hand, due to the apparent contradictions regarding the rules for determining the appropriate values of the control parameters from the literature, some techniques have been designed with a view of adjusting control parameters in adaptive or self-adaptive manner instead of manual tuning procedure. Zaharie [22] introduced an adaptive DE (ADE) algorithm based on the idea of controlling the population diversity and implemented a multi-population approach. Liu et al. [23] proposed a Fuzzy Adaptive Differential Evolution (FADE) algorithm. Fuzzy logic controllers were used to adjust F and CR. Numerical experiments and comparisons on a set of well known benchmark functions showed that the FADE Algorithm outperformed basic DE algorithm. Likewise, Brest et al. [24] proposed an efficient technique, named jDE, for self- adapting control parameter settings. This technique encodes the parameters into each individual and adapts them by means of evolution. The results showed that jDE is better than, or at least comparable to, the standard DE algorithm, (FADE) algorithm and other state of-the-art algorithms when considering the quality of the solutions obtained. In the same context, Omran et al. [25] proposed a Self-adaptive Differential Evolution (SDE) algorithm. F was self-adapted using a mutation rule similar to the mutation operator in the basic DE. The experiments conducted showed that SDE generally outperformed DE algorithms and other evolutionary algorithms. Qin et al. [26] introduced a self-adaptive differential evolution (SaDE). The main idea of SaDE is to simultaneously implement two mutation schemes: "DE/rand/1/bin” and "DE/ best/2/bin'' as well as adapt mutation and crossover parameters. The Performance of SaDE evaluated on a suite of 26 several benchmark problems and it was compared with the conventional DE and three adaptive DE variants. The experimental results demonstrated that SaDE yielded better quality solutions and had a higher success rate. In the same context, inspired by SaDE algorithm and motivated by the success of diverse self-adaptive DE approaches, Mallipeddi et al. [19] developed a self-adaptive DE, called EPSDE, based on ensemble approach. In EPSDE, a pool of distinct mutation strategies along with a pool of values for each control parameter coexists throughout the evolution process and competes to produce offspring. The performance of EPSDE was evaluated on a set of bound constrained problems and was compared with conventional DE and other state-of-the-art parameter adaptive DE variants. The resulting comparisons showed that EPSDE algorithm outperformed conventional DE and other state of-the-art parameter adaptive DE variants in terms of solution quality and robustness. Similarly, motivated by the important results obtained by other researchers during past years, Wang et al. [27] proposed a novel method, called composite DE (CoDE). This method used three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. The performance of CoDE has been evaluated on 25 benchmark test functions developed for IEEE CEC2005 and it was very competitive to other compared algorithms. Recently, Super-fit Multicriteria Adaptive DE (SMADE) is proposed by Caraffini et al. [28], which is a Memetic approach based on the hybridization of the Covariance Matrix Adaptive Evolutionary Strategy (CMAES) with modified DE, namely Multi criteria Adaptive DE (MADE). MADE makes use of four mutation/crossover strategies in adaptive manner which are rand/1/bin, rand/2/ bin, rand-to-best/2/bin and current-to-rand/1. The control parameters CR and F are adaptively adjusted during the evolution. At the beginning of the optimization process, CMAES is used to generate a solution with a high quality which is then injected into the population of MADE. The performance of SMADE has been evaluated on 28 benchmark test functions developed for IEEE CEC2013 and the experimental results are very promising. On the other hand, improving the trial vector generation strategy has attracted many researches. In fact, DE/rand/1 is the fundamental mutation strategy developed by Storn and Price [2,3], and is reported to be the most successful and widely used scheme in the literature [16]. Obviously, in this strategy, the three vectors are chosen from the population at random for mutation and the base vector is then selected at random among the three. The other two vectors form the difference vector that is added to the base vector. Consequently, it is able to maintain population diversity and global search capability with no bias to any specific search direction, but it slows down the convergence speed of DE algorithms [26]. DE/ rand/2 strategy, like the former scheme with extra two vectors that forms another difference vector, which might lead to better perturbation than one-difference-vector-based strategies [26]. Furthermore, it can provide more various differential trial vectors than the DE/rand/1/bin strategy which increase its exploration ability of the search space. On the other hand, greedy strategies like DE/best/1, DE/best/2 and DE/current-to-best/1 incorporate the information of the best solution found so far in the evolutionary process to increase the local search tendency that lead to fast convergence speed of the algorithm. However, the diversity of the population and exploration capability of the algorithm may deteriorate or may be completely lost through a very small number of generations i.e. at the beginning of the optimization process, that cause problems such stagnation and/or premature convergence. Thus, In order to improve the convergence velocity of DE, Fan & Lampinen [18] proposed a trigonometric mutation scheme, which is considered local search operator, and combined it with DE/rand/1 mutation operator to design TDE algorithm. Zhang & Sanderson [29] introduced a new differential evolution (DE) algorithm, named JADE, to improve optimization performance by implementing a new mutation strategy "DE/current-to-p best” with optional external archive and by updating control parameters in an adaptive manner. Simulation results show that JADE was better than, or at least competitive to, other classic or adaptive DE algorithms such as Particle swarm and other evolutionary algorithms from the literature in terms of convergence performance. Tanabe & Fukunaga [30] proposed an improved variant of the JADE algorithm [29] and called the same as the Success History based DE (SHADE). In SHADE, instead of sampling the F and Cr values from gradually adapted probability distributions, the authors used historical memory archives MCr and MF which store a set of Cr and F values, respectively that have performed well in the recent past .The algorithm generates new Cr, F pairs by directly sampling the parameter space close to one of the stored pairs. Out of the 21 algorithms that participated in the IEEE CEC 2013 competition on real parameter single-objective optimization, SHADE ranked 3rd, the first two ranks being taken by non-DE based algorithms. Tanabe & Fukunaga [31] further improved the SHADE algorithm by using the linear population size reduction and called this variant as L-SHADE. In L-SHADE, the population size of DE is continually reduced by means of a linear function [16]. Mohamed et al. [32] enhances the LSHADE algorithm by employing an alternative adaptation approach for the selection of control parameters is proposed. The proposed algorithm, named LSHADE-SPA, uses a new semi-parameter adaptation approach to effectively adapt the values of the scaling factor of the Differential evolution algorithm. The proposed approach consists of two different settings for two control parameters F and Cr. The benefit of this approach is to prove that the semi-adaptive algorithm is better than pure random algorithm or fully adaptive or self- adaptive algorithm. To enhance the performance of LSHADE- SPA algorithm, they also introduced a hybridization framework named LSHADE-SPACMA between LSHADE-SPA and a modified version of CMA-ES. The modified version of CMA-ES undergoes the crossover operation to improve the exploration capability of the proposed framework. In LSHADE-SPACMA both algorithms will work simultaneously on the same population, but more populations will be assigned gradually to the better performance algorithm. Out of the 12 algorithms that participated in the IEEE CEC 2017 competition on real parameter single-objective optimization, LSHADE-SPACMA ranked 3rd. Along the same lines, to overcome the premature convergence and stagnation problems observed in the classical DE, Islam et al. [33] proposed modified DE with p-best crossover, named MDE_PBX . The novel mutation strategy is similar to DE/current-to-best/1 scheme. It selects the best vector from a dynamic group of q% of the randomly selected population members. Moreover, their crossover strategy uses a vector that is randomly selected from the p top ranking vectors according to their objective values in the current population (instead of the target vector) to enhance the inclusion of generic information from the elite individuals in the current generation. The parameter p is linearly reduced with generations to favors the exploration at the beginning of the search and exploitation during the later stages by gradually downsizing the elitist portion of the population. Das et al. [34] proposed two kinds of topological neighborhood models for DE in order to achieve better balance between its explorative and exploitative tendencies. In this method, called DEGL, two trial vectors are created by the global and local neighborhood-based mutation. These two trial vectors are combined to form the actual trial vector by using a weight factor. The performance of DEGL has been evaluated on 24 benchmark test functions and two real-world problems and showed very competitive results. In order to solve unconstrained and constrained optimization problems, Mohamed et al. [35,36] proposed a novel directed mutation based on the weighted difference vector between the best and the worst individuals at a particular generation, is introduced. The new directed mutation rule is combined with the modified basic mutation strategy DE/rand/1/bin, where only one of the two mutation rules is applied with the probability of 0.5. The proposed mutation rule is shown to enhance the local search ability of the basic Differential Evolution (DE) and to get a better trade-off between convergence rate and robustness. Numerical experiments on well-known unconstrained and constrained benchmark test functions and five engineering design problems have shown that the new approach is efficient, effective and robust. Similarly, to enhance global and local search capabilities and simultaneously increases the convergence speed of DE, Mohamed [37] introduced a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vector between the best and the worst individuals among the three randomly selected vectors.

The proposed mutation vector is generated in the following manner:


[image: ]

In this algorithm, called IDE, the mutation rule is combined with the basic mutation strategy through a non-linear decreasing probability rule. A restart mechanism is also proposed to avoid premature convergence. IDE is tested on a well-known set of unconstrained problems and shows its superiority to state-of-the-art differential evolution variants. Furthermore, the triangular mutation has been used to solve unconstrained problems [38], constrained problems [39-41] as well as large scale problems [42]. Recently, In order to utilize the information of good and bad vectors in the DE population, Mohamed & Mohamed [43] proposed adaptive guided Differential Evolution algorithm (AGDE) for solving global numerical optimization problems over continuous space. In order to utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and the bottom 100p% individuals in the current population of size NP while the third vector is selected randomly from the middle (NP-2(100p%))individuals. This new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. The proposed mutation vector is generated in the following manner:
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Where, xGr is a random chosen vector from the middle (NP-2 (100p%)) individuals, xGp_ best and xGp_ worst are randomly chosen as one of the top and bottom 100p% individuals in the current population, respectively, with p∈(0%,50%), is the mutation factors that are independently generated according to uniform distribution in (0.1,1). Really, the main idea of the proposed novel mutation is based on that each vector learns from the position of the top best and the bottom worst individuals among the entire population of a particular generation. Besides, a novel and effective adaptation scheme is used to update the values of the crossover rate to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of AGDE, Numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30, and 50 dimensions, including a comparison with classical DE schemes and some recent evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, AGDE is significantly better than, or at least comparable to state-of-the-art approaches. Besides, in order to solve large scale problems, Mohamed [41] proposed enhanced adaptive differential evolution (EADE) algorithm for solving high dimensional optimization problems over continuous space. He used the proposed mutation [44] with a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which, in turn, can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 7 and 20 standard highdimensional benchmark numerical optimization problems for both the IEEE CEC-2008 and the IEEE CEC-2010 Special Session and Competition on Large-Scale Global Optimization. The comparison results between EADE and its version and the other state-of-art algorithms that were all tested on these test suites indicate that the proposed algorithm and its version are highly competitive algorithms for solving large-scale global optimization problems.

Practically, it can be observed that the main modifications, improvements and developments on DE focus on adjusting control parameters in an adaptive or self-adaptive manner.However, a few enhancements have been implemented to modify the structure and/or mechanism of basic DE algorithm or to propose new mutation rules so as to enhance the local and global search ability of DE and to overcome the problems of stagnation or premature convergence.

Conclusion

Over the last decade, many EAs have been proposed to solve optimization problems. However, all these algorithms including DE have the same shortcomings in solving optimization problems. These short coming are as follows:

i.	Premature convergence and stagnation due to the imbalance between the two main contradictory aspects exploration and exploitation capabilities during the evolution process,

ii.	Sensitivity to the choice of the control parameters which are difficult to adjust for different problems with different features,

iii.	Their performances decrease as search space dimensionality increases. Consequently, to overcome these obstacles, a considerable number of research studies have been proposed and developed to enhance the performance of DE, and they can be classified into three categories.

o Using adaptive or self-adaptive mechanisms to adapt strategies and parameters of DE combined with single search operator or multiple search operators

o Controlling the population diversity of DE by introducing new parameters to measure the diversity during the evolution process.

o Hybridizing DE with another evolutionary algorithm or classical method or incorporating local search techniques.

Although all of the above method can probably enhance the performance of Basic DE, they definitely increase the complexity of the algorithm by introducing extra parameters and/or complicated mechanisms. Nonetheless, so far, there have been a few attempts in the literature to introduce novel mutations that can balance the general trade-off between the global exploration and local exploitation with fast convergence speed.
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problems at any generation g>1, for each target vector, three
vectors are randomly selected, then sorted in an ascending

: g
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