

Mini Review

Volume 5 Issue 2 : February 2026
DOI: 10.19080/PMCIJ.2025.05.555656

Palliat Med Care Int J
Copyright © All rights are reserved by Mert YETGİN

Extubation Criteria in Clinical Practice: Are We Applying Evidence Consistently?

Mert YETGİN*

Department of Anaesthesiology and Reanimation, Servergazi State Hospital, Denizli, Turkey

Submission: January 28, 2026; Published: February 10, 2026

*Corresponding author: Mert YETGİN, Department of Anaesthesiology and Reanimation, Servergazi State Hospital, Denizli, Turkey

Abstract

Tracheal extubation represents a pivotal transition in the management of mechanically ventilated patients and should be regarded as an active, risk-based clinical intervention rather than a passive endpoint of ventilatory support. Extubation failure is consistently associated with increased morbidity, prolonged intensive care unit stay, and higher mortality, underscoring the importance of accurate patient selection and optimal timing. Over the past decade, multiple guidelines, systematic reviews, and meta-analyses have proposed physiological, clinical, and airway-related criteria to support extubation decision-making.

Despite this expanding evidence base, extubation practices remain highly variable across institutions and clinical settings. Commonly used tools, including spontaneous breathing trials and the rapid shallow breathing index, demonstrate only moderate predictive accuracy when applied in isolation. Emerging approaches such as diaphragm ultrasonography, along with greater emphasis on airway protection, neurological status, timing of extubation, and post-extubation respiratory support, highlight the need for a multidimensional assessment strategy. However, these components are frequently applied in a fragmented and inconsistent manner in routine clinical practice.

This mini-review synthesizes contemporary evidence on extubation criteria and critically examines the gap between guideline recommendations and real-world application. By highlighting limitations of single-parameter thresholds and inconsistencies in clinical implementation, this review advocates for structured, risk-stratified extubation pathways to improve patient safety and optimize post-extubation outcomes in critically ill adults.

Keywords: Extubation; Weaning from Mechanical Ventilation; Spontaneous Breathing Trial; Airway Management; Post-Extubation Respiratory Support; Intensive Care Unit

Abbreviations ICU: Intensive care unit; SBT: Spontaneous breathing trial; RSBI: Rapid shallow breathing index; NIV: Non-invasive ventilation; HFNO: High-flow nasal oxygen.

Introduction

Tracheal extubation is not merely a technical step marking the termination of mechanical ventilation but a critical clinical decision with substantial implications for patient safety and outcomes. Increasingly, contemporary literature emphasizes that extubation should be conceptualized as an active, risk-based clinical intervention rather than a passive endpoint of ventilatory support. Extubation failure is consistently associated with increased mortality, prolonged intensive care unit (ICU) length of stay, and greater healthcare resource utilization. Consequently, clinicians are encouraged to adopt evidence-based approaches when determining both the timing of extubation and patient

readiness [1,3]. Despite the availability of multiple guidelines, systematic reviews, and meta-analyses, extubation criteria continue to be applied heterogeneously in routine clinical practice.

Physiological Readiness and Spontaneous Breathing Trials

Assessment of physiological readiness represents a cornerstone of extubation decision-making. Spontaneous breathing trials (SBTs) are designed to evaluate a patient's capacity to maintain adequate respiratory effort and gas exchange in the absence of substantial ventilatory support. Although SBTs are

universally regarded as an indispensable step prior to extubation, considerable variability exists in their execution, including the use of T-piece trials, low-level pressure support ventilation, or continuous positive airway pressure-based strategies [5]. Importantly, successful completion of an SBT does not equate to guaranteed extubation success. Evidence from systematic reviews demonstrates that a substantial proportion of patients who successfully complete an SBT subsequently require reintubation [3,5]. These findings highlight the limitations of relying on SBT performance as a binary decision tool and underscore the need for complementary physiological and clinical assessments.

Predictive Indices and Respiratory Muscle Function

The rapid shallow breathing index (RSBI) remains one of the most frequently used predictors of extubation outcomes. Meta-analytic evidence indicates that RSBI provides only moderate predictive accuracy, with significant heterogeneity across patient populations and clinical contexts [6]. Nevertheless, RSBI thresholds are often applied rigidly in daily practice, potentially overlooking individual variability in respiratory reserve and clinical trajectory. In recent years, increasing attention has been directed toward the assessment of respiratory muscle function. Diaphragm ultrasonography offers a non-invasive method for evaluating diaphragm thickness and thickening fraction, thereby providing insight into inspiratory muscle reserve. Systematic reviews and meta-analyses suggest that integrating diaphragm ultrasound with conventional indices improves the prediction of weaning and extubation outcomes [7,8]. However, the operator-dependent nature of ultrasonography and the requirement for specialized training limit its widespread adoption in many ICUs.

Airway Protection and Neurological Assessment

While respiratory mechanics often dominate extubation decision-making, airway protection remains a critical determinant of success. Effective cough, manageable secretions, and an adequate level of consciousness are essential for maintaining airway patency following extubation. In postoperative and neurologically vulnerable patients, fluctuations in mental status and emergence agitation have been independently associated with extubation failure [11]. For patients with an anticipated "at-risk" airway, current guidelines recommend structured extubation planning and predefined rescue strategies to mitigate the risk of post-extubation airway compromise [2,4]. Nevertheless, adherence to these recommendations in routine practice remains inconsistent, and extubation decisions are frequently driven primarily by respiratory parameters rather than a comprehensive airway-focused assessment.

Timing of Extubation and Clinical Context

The timing of extubation has emerged as an important contextual factor influencing patient outcomes. Observational studies suggest that extubations performed during nighttime

hours may be associated with higher complication rates in selected patient populations [9]. This association likely reflects differences in staffing levels, monitoring intensity, and immediate access to experienced personnel rather than intrinsic patient-related factors. In certain surgical populations, particularly following cardiac surgery, the implementation of structured and protocolized extubation pathways has been shown to improve consistency and safety in clinical decision-making [10]. These findings support the adoption of standardized extubation frameworks to reduce practice variability across institutions.

Post-Extubation Respiratory Support

Recognition of extubation as a high-risk transition has increased interest in post-extubation respiratory support strategies. Meta-analytic data indicate that early application of noninvasive ventilation or high-flow nasal oxygen in selected high-risk patients can reduce the incidence of reintubation [12]. Despite this evidence, such strategies are frequently reserved for rescue therapy rather than employed prophylactically, reflecting persistent uncertainty in risk stratification and implementation.

Unplanned Extubation and Quality Indicators

Unplanned extubation remains a significant patient safety concern and is consistently associated with adverse outcomes, including increased mortality and prolonged ICU stay [13]. These events often reflect systemic deficiencies such as inadequate sedation management, insufficient monitoring, or premature extubation decisions. Incorporating standardized extubation criteria into quality improvement initiatives may therefore contribute to reducing the incidence of unplanned extubation.

Are We Applying Evidence Consistently?

Collectively, available evidence supports a multidimensional approach to extubation decision-making that integrates respiratory mechanics, inspiratory muscle function, airway protection, neurological status, timing, and post-extubation support. However, real-world practice frequently reflects fragmented and inconsistent application of these elements. Although guidelines and meta-analyses provide robust conceptual frameworks, their translation into bedside practice remains incomplete [1-4]. Barriers to consistent implementation include resource limitations, variability in clinician expertise, and the absence of institution-specific protocols. As a result, extubation decisions often continue to rely more heavily on individual clinical judgment and local practice patterns than on standardized, evidence-based criteria.

Discussion

The present review highlights a persistent gap between the growing evidence base surrounding extubation criteria and their consistent application in clinical practice. Although contemporary guidelines and meta-analyses increasingly conceptualize

extubation as an active, risk-based clinical intervention, bedside decision-making often remains simplified and heavily reliant on isolated physiological thresholds. This discrepancy suggests that the challenge lies not in the absence of evidence, but in its translation into routine care. One of the key interpretative findings of this review is the continued overreliance on spontaneous breathing trials and single predictive indices, such as the rapid shallow breathing index, despite well-documented limitations in their standalone predictive accuracy. While these tools provide valuable information regarding respiratory readiness, their widespread use as binary decision points may foster a false sense of security and contribute to unexpected extubation failure. In contrast, emerging modalities, including diaphragm ultrasonography and structured airway risk assessment, underscore the importance of a more nuanced and integrative evaluation.

Another important consideration is the influence of contextual and system-level factors on extubation outcomes. Variability in staffing, monitoring intensity, and institutional protocols—particularly during off-hours appears to modulate risk independently of patient physiology. These findings support the notion that extubation success is not solely patient-dependent but is also shaped by organizational readiness and resource availability. Finally, post-extubation respiratory support strategies illustrate a broader pattern of reactive rather than proactive care. Although evidence supports prophylactic use of non-invasive ventilation or high-flow nasal oxygen in selected high-risk patients, these interventions are frequently reserved for rescue therapy. This tendency reflects ongoing uncertainty in risk stratification and highlights the need for clearer, protocol-driven guidance. In summary, the evidence reviewed suggests that extubation decisions would benefit from a shift away from single-parameter thresholds toward structured, multidimensional, and context-aware decision pathways. Improving consistency in applying existing evidence may represent a more immediate and achievable goal than generating additional predictive tools.

Conclusion

Despite a robust and expanding evidence base informing extubation criteria, consistent implementation in clinical practice remains challenging. Current decision-making frequently relies on simplified physiological thresholds, which may fail to capture the multidimensional nature of extubation readiness. The findings discussed in this review suggest that extubation success is determined not only by respiratory mechanics, but also by inspiratory muscle function, airway protection, neurological status, timing, and the availability of post-extubation support. Moving toward structured, risk-stratified extubation pathways

that integrate these components may enhance patient safety and reduce preventable extubation failure. Importantly, improving the consistent application of existing evidence may represent a more immediate and achievable goal than developing additional predictive tools. Future efforts should therefore focus on translating current knowledge into pragmatic, context-sensitive protocols that can be sustainably implemented across diverse clinical environments.

References

1. Benham-Hermetz J, Mitchell V (2021) Safe tracheal extubation after general anaesthesia. *BJA Educ* 21(12): 446-454.
2. Law JA, Duggan LV, Asselin M (2021) Canadian Airway Focus Group updated consensus-based recommendations for management of the difficult airway: Part 2. Planning and implementing safe management of the patient with an anticipated difficult airway. *Can J Anaesth* 68(9): 1405-1436.
3. Torrini F, Gendreau S, Morel J, Carteaux G, Thille AW, et al. (2021) Mekontso Dessap A. Prediction of extubation outcome in critically ill patients: A systematic review and meta-analysis. *Crit Care* 25(1): 391.
4. Kundra P, Shah AP, Ahmed SM (2025) All India Difficult Airway Association 2025 guidelines for extubation of the “at-risk” airway. *Indian J Anaesth* 69(11): 1187-1207.
5. Burns KEA, Hill NS, Cook DJ (2025) Spontaneous breathing trial techniques—reply. *JAMA* 333(15): 1362-1363.
6. Jia D, Zhang Y, Liu X (2024) Rapid shallow breathing index for predicting extubation outcomes in critically ill patients: A systematic review and meta-analysis. *Intensive Crit Care Nurs* 78: 103430.
7. Xie D, Xu H, Wang F, Wen W, Dong B et al. (2025) Diagnostic accuracy of rapid shallow breathing index based on diaphragm ultrasound for predicting successful weaning from mechanical ventilation: A systematic review and meta-analysis. *Intensive Crit Care Nurs* 90: 104038.
8. Le Neindre A, Dupont H, Mulliez A, Mongodi S, Mojoli F et al. (2021) Diaphragm ultrasound to predict weaning outcome: A systematic review. *Int J Nurs Stud* 115:103855.
9. Ippolito M, Vitale F, Accurso G, Giarratano A, Cortegiani A et al. (2022) Night-time extubation in critically ill patients: Outcomes and risk factors. *Eur J Anaesthesiol* 39(4): 305-312.
10. Luo RY, Chen X, Wang Y (2025) Effectiveness of structured extubation protocols in adult cardiac surgery patients: A retrospective cohort study. *BMC Anesthesiol* 25(1): 112.
11. Wei B, Wang L, Li J, Feng Y, Chen W et al. (2021) Risk factors for emergence agitation after general anesthesia in adults: A systematic review and meta-analysis. *Acta Anaesthesiol Scand* 65(7): 934-942.
12. Li R, Zhang X, Chen Y, Wei K, Zheng X et al. (2023) Noninvasive respiratory support following extubation in adult surgical patients: A systematic review and network meta-analysis. *J Clin Anesth* 86: 111080.
13. Li P, Sun Z, Xu J (2022) Risk factors and outcomes of unplanned extubation in intensive care units. *Intensive Crit Care* 69: 103160.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: 10.19080/PMCIJ.2026.05.555656

**Your next submission with Juniper Publishers
will reach you the below assets**

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
(Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
<https://juniperpublishers.com/online-submission.php>