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Introduction 

Post-traumatic osteoarthritis (PTOA) is a common clinic entity 
in diarthrodial joints due to damage to the articular cartilage, 
subchondral bone, incongruity of the articular surface or joint 
instability caused by an acute injury. Intraarticular fractures, 
meniscal tears, ligamentous injuries and chondral injuries are 
common causes leading to PTOA [1]. Unlike idiopathic OA which 
tends to affect older adults in specific joints such as the knee, hip 
and shoulder, PTOA occurs in younger patients, often develops 
and progresses more quickly, and in accordance with joint injury 
[2]. Indeed, it has been reported that patients with disabling OA 
who had had an articular injury are more than 10 years younger 
than those who did not have joint trauma. In addition, 13.9% 
of patients with a history of joint injury during adolescence or 
young adults developed knee OA, compared with just 6% of those 
without a history of joint trauma [3]. Other studies reported that 
ranges from 20% to more than 50% of patients who had had joint 
trauma develop OA [4].

Posttraumatic OA may present in any joint after trauma, 
though limited epidemiologic data are available regarding 
PTOA in joints other than hip, knee, ankle and shoulder. PTOA  

 
represents approximately 12% of all OA in the hip, knee and ankle. 
This translated to an estimate of 5.6 million people in the United 
States [5]. Posttraumatic OA of the hip, for example, represents 
approximately 2% of all cases of hip OA [5]. The prevalence of 
hip PTOA is higher among military personnel, with rates reaching 
20% [6]. At the shoulder, PTOA prevalence ranges from 8% to 20% 
in patients scheduled to undergo a variety of surgical stabilization 
procedures for anterior glenohumeral instability [7]. Regarding 
the ankle, for instance, trauma is the most common cause of OA 
[5]. 

Generally, PTOA is not clinically diagnosed until the onset 
of the symptomatic phase, which is highly variable. PTOA may 
occur early, in less than a year or remain asymptomatic for a long 
period of time, even 10– 20 years after the trauma. However, in 
both cases, it is increasingly believed that the OA development in 
the injured joints initiates during the initial traumatic event by 
intra-articular pathogenic processes such as apoptosis of articular 
chondrocytes, subchondral bone remodelling, cellular infiltration 
and the release of inflammatory mediators in synovial fluid (SF) 
[8].
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An increased understanding of the molecular, 
mechanobiological and cellular events involved in the pathogenesis 
of chronic PTA may open interesting perspectives concerning new 
therapeutic opportunities and thereby offer patients safer and 
more effective drugs. Preventive measures are thought to be the 
most effective strategy to limit the degree of acute joint damage 
and the eventual development of chronic PTA. Thus, The ideal 
therapy should include early clinical interventions during the first 
phases after joint injury and address several pathogenic pathways 
[9].

 Factors involved in development of PTOA

The pathogenic mechanisms after joint injury may vary 
depending on the severity of mechanical impact, degree of tissue 
damage, associated injuries, general condition and co-morbidities. 
Low-energy injuries, such as joint contusions, dislocations, and 
ligamentous and meniscal injuries, commonly cause articular 
surface damage without displaced bone fracture, although 

microfractures of calcified cartilage and/or subchondral bone 
may exist. Higher energy injuries often cause displaced intra-
articular fractures [10]. 

The clinical expression of this damage depends on the main 
underlying pathway and predominant joint tissue involved at 
a point in time [11]. Subchondral bone injury is the main event, 
non-specific bone pain due to subchondral ischaemia or oedema, 
or both, is the prominent manifestation and is expressed as bone 
marrow lesions on MRI [12]. If the main target tissue is the synovial 
membrane, an inflammatory phenotype will dominate the clinical 
presentation. In other cases, soft tissue alterations dominate 
clinical manifestations of bursitis or tendonitis. All these clinical 
forms are interchangeable in the early stages of the disease, and 
sometimes a predominantly damaged mechanism can manifest 
through different clinical phenotypes in various tissues at the 
same time. Later on, symptoms become more homogeneous, 
entering a clinical status that we describe as the common OA 
syndrome in the advanced stages of the disease (Figure 1) [13].

Figure 1: Factors involved in the development of posttraumatic arthritis after injury [14].

Concerning articular fractures, they represent a complex injury 
state consisting of impact loading to the joint as well as disruption 
of cartilage, bone, and other soft tissues. These effects result in 
a multifaceted interaction of mechanical as well as biological 
effects that may influence the natural history of joint disease 
[15]. In more challenging cases of highly comminuted fractures, 

restoration of the biomechanical state and congruity of the joint 
may, in fact, be impossible [14]. This alteration in the articular 
surfaces may result in abnormal loading of the cartilage and 
subchondral bone, and some of the cartilage may be overloaded 
and other areas where displacement remains may be unloaded. 
Under normal conditions, mechanical stress plays an important 
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role in the health of the joint; however, under abnormal conditions, 
mechanical stress has been associated with progressive cartilage 
degeneration (Figure 2) [16]. Inadequate loading, or joint disuse, 
can also lead to loss of proteoglycans, decreased compressive 
stiffness, and increased hydration. Furthermore, in vivo as well as 
in vitro studies have demonstrated that a traumatic impact load 
may induce mechanical damage to the tissue, including splitting of 
the extracellular matrix, increased tissue hydration, and decreased 

stiffness and damage to the subchondral bone [17]. Thus, the 
effects of articular fracture may represent localized differences 
in patterns of joint stresses as well as the biological responses of 
joint tissues to these stresses. Furthermore, recent studies suggest 
that the effect of mechanical loading on the homeostasis of joint 
tissues may depend on the degree of joint inflammation [18,19]. 
The interaction of biomechanical loading and inflammation in the 
repair process after articular fracture is largely unknown [20].

Figure 2: Hip-joint contact patterns as measured by pressure sensitive film interposed in the joint of a cadaver pelvis loaded in simulated 
single-leg stance. Contact patters are shown for joints with an intact acetabulum (intact), after transverse acetabular fracture that was 
anatomically reduced (anatomic), or after malreductions that result in steps (step) or gaps (gap) in the articular surface. For example, Step 
malreduction of the transtectal transverse fracture resulted in significantly increased peak contact pressures (20.5 MPa) in the superior 
acetabular articular surface as opposed to the intact acetabulum (9.1 MPa) [14].

Timeline of the pathogenic processes following joint 
injury

Joint injuries, with or without associated disruption of the 
articular surface, frequently lead to a progressive process of severe 
debilitating condition known as acute posttraumatic arthritis 
(PTA) (Figure 3) [8]. The acute symptoms following joint trauma 
include swelling, synovial effusion, severe pain and sometimes 
internal bleeding. Usually, PTA recoveries spontaneously in 2–3 
months. The persistence of symptoms after this period should 
deserve attention and after 6 months, in clinical practice, it may be 
considered pathological and so-called chronic PTA. Chronic PTA 
can therefore represent an inflammatory condition that persists 
over time after a joint trauma. The most frequent chronic PTA is 
post-traumatic osteoarthritis (PTOA). However, a non-negligible 
number of PTA may lead to chronic inflammatory arthritis (PTIA), 
in particular psoriatic arthritis (PsA) [10,21].

Pathological Changes in Post-Traumatic OA

Pathological processes after joint injury can temporally be 
separated into the acute post-traumatic phase with inflammation 

of joint tissues, and the chronic phase. In the acute posttraumatic 
phase, effects of joint trauma include structural damage to joint 
tissues, hemarthrosis, and death of articular chondrocytes [22]. 
The lubricating properties of the synovial fluid is compromised as 
a result of the dilution of synovial fluid by intra-articular bleeding 
and plasma extravasation, leading to lower concentrations of 
hyaluronic acid and lubricant. Also, Joint trauma may lead to 
suppression of collagen and proteoglycan synthesis in articular 
cartilage. Remaining viable cells in joint tissues may respond to 
the injury with enhanced synthetic activity and overexpression 
of matrix degrading enzymes and inflammatory mediators. 
Initial cell necrosis is followed by a subsequent spreading of cell 
death mediated by apoptotic mechanisms, which occurs beyond 
the initial area into surrounding unimpacted regions [23,24]. 
In the chronic phase, metabolic changes in articular cartilage 
and other joint tissues slowly progress through a long, clinically 
asymptomatic period to a symptomatic phase with joint pain 
and dysfunction as a result of joint destruction. The majority of 
patients with PTOA are not clinically diagnosed with arthritis until 
the symptomatic phase [25]. For simplicity, pathologic changes 
occurring in PTOA can be divided into changes in articular 
cartilage, synovium and bone (Figure 4).
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Figure 3: Timeline of the pathogenic processes following joint injury [8].

Figure 4: Possible pathogenetic mechanisms underlying the development of PTOA after joint injury [10].
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Pathologic changes in articular cartilage

 Mechanobiologic Mechanisms

The mechanical disruption of the extracellular matrix 
(ECM) may lead to release of glycosylated amino glycans 
(GAG) and collagen molecules, which are sensed through 
mechanoreceptors and molecular cell surface receptors by the 
surrounding chondrocytes [26,27]. This leads to changes in 
gene expression and cartilage metabolism, which could set up a 
cascade of events leading to degradation of the articular cartilage 
[17]. Chondrocytes sense mechanical load through integrin-
cytoskeletal interactions as well as ion-stretch activated channels 
in the membrane [28]. Mechanical stimulations activate α5β1 
integrin-dependent intracellular signaling cascade. This triggers 
Interleukin 4 (IL- 4) release through focal adhesion kinase and 
kinase C [29]. Repression in gene expression of cell adhesion 
molecules, intercellular adhesion molecule 3 (ICAM-3), neural cell 
adhesion molecule (NCAM) and vascular cell adhesion protein 
are involved in homophilic cell-adhesion. Ezrin, an actin binding 
protein, is also up regulated. Ezrin works with other actions 
in mediating cytoskeletal interactions with CD44 regulating 
hyaluronic acid metabolism. Other signal transduction molecules 
SP110 nuclear body protein, high-mobility group box 2 (HMGB-
2) and neurogranin are also up-regulated [30]. At least a subset 
of N-methyl-D-aspartic acid (NMDA) receptors also appears to be 
involved in mechanotransduction in articular chondrocytes [29]. 

Mechanical compression activates pathways involving 
intracellular calcium release as well as activation of cyclic AMP-
activated protein kinase A. C-fos and c-jun mediated transcription 
factors are significantly up-regulated immediately following 
cartilage injury. Although much remains to be elucidated about 
how chondrocytes sense strain and damage to the matrix around 
them, it is clear that abnormal mechanical stimulations may cause 
dysfunction of articular chondrocytes and breakdown of cartilage 
ECM, leading to articular cartilage degradation (Figure 5) [31].

Cellular Mechanisms

Numerous in vitro as well as in vivo studies have identified 
chondrocyte death following impact to articular cartilage [32,33]. 
This occurs both through cell necrosis as well as apoptosis [34]. 
Necrotic cell death can occur at the time of injury in areas of 
impaction greater than 15-20 MPa. This appears to be isolated 
to the cells directly under the compressive force. The amount of 
necrosis increases predictably with the amount of force applied 
up to 35 MPa. At greater than 40 MPa of impaction, complete 
cell death is observed [35]. Kurz et al. found that strain rate was 
also an important determinant of the chondrocyte in response 
to injury with higher strain rates associated with decreased cell 
anabolism and viability. Thus, there is substantial evidence that 
a single traumatic insult with a threshold amount of force can 
cause chondrocyte necrosis [36,37]. As chondrocytes are the cells 
responsible for maintaining the function of articular cartilage, it 

seems logical that chondrocyte death, mostly through apoptotic 
mechanisms is a central feature to the development of PTOA [38]. 
Chondrocyte apoptosis may take place soon or more remotely 
after articular cartilage disruption [39]. This can occur with 
or without visible damage to the cartilage. Apoptosis has been 
correlated with damage to the ECM and likely involves damage to 
the cell membrane [40,41]. 

In both in vivo and in vitro models of cartilage damage, 
chondrocytes both in and peripheral to the zone of injury show 
continued biochemical and biomechanical changes over time 
[42]. With damage to the cartilage matrix the chondrocytes 
experience significant changes in expression of proteins involved 
in both anabolic as well as catabolic pathways. This increases the 
overall metabolic stress on the cell. There is continued mechanical 
stress on the cell through alterations in the cell environment 
caused by the initial trauma and/or continued abnormal loading 
of the matrix. There is evidence to suggest that some apoptotic 
chondrocyte death, at least in vitro models, is mediated through 
oxygen free radicals from the mitochondria [43]. A reduction in 
chondrocyte death has been shown with the use of antioxidants 
following cartilage injury [44,45]. 

The Caspase pathway is likely the main mediator of apoptosis 
within the cell. Extracellular signals such as tumor necrosis factor 
(TNF) and Fas can activate the cascade [46]. Intrinsic signals such 
as damage to DNA and signaling from the endoplasmic reticulum 
also activate caspases [47]. As DNA damage accumulates, 
mitochondria are depolarized leading to further amplification 
of caspase 3 via caspase 9, which may result in continued DNA 
breakdown. As chondrocytes die, they are no longer able to 
maintain the ECM around them. This puts greater mechanical 
and metabolic stress on the remaining chondrocytes. Therefore, 
it would seem that once a critical number of chondrocytes have 
undergone apoptosis, more chondrocyte death would continue 
until degeneration of the entire cartilage surface has occurred 
[48]. Instability of the joint may result in abnormal loading forces 
leading to changes in chondrocyte metabolism and cartilage 
degradation [49]. However, cell necrosis is unlikely to be the 
initial cause of alterations in chondrocyte metabolism in the 
animal model of PTOA induced by destabilization of the meniscus 
and transection of the ACL [50]. 

 Molecular and metabolic mechanisms

Shortly after cartilage injury, articular cartilage displays 
significant changes in the expression of matrix-degrading 
enzymes. Matrix metalloproteinase 3 (MMP-3, stromelysin-1), a 
disintegrin and metalloproteinase with thrombospondin motifs 
5 (ADAMTS-5), and tissue inhibitor of metalloproteinases 1 
increased dramatically within 4 hours [23]. These enzymes lead to 
breakdown of the ECM of articular cartilage. ADAMTS-5 knockout 
showed less degeneration and less changes in their subchondral 
bone than their wild type littermates after destabilization of 
the medial meniscus (DMM) [51]. A study by Polur et al. [52] 
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showed DMM led to an increased expression of high temperature 
requirement A 1 (HTRA1) protein in vivo. This enzyme is involved 
in degradation of the pericellular matrix. Release of collagen-2 
and breakdown of proteoglycans occurs after joint injury [53]. 
Collagen-2 molecules then act on the discoidin domain receptor 
2 (Ddr2) through ras/raf/MEK/ ERK and p38 signaling pathways, 
which induces the expression of MMP-13 [54,55]. Klatt et al. also 
provide evidence that collagen II induces MMP1, 2, 13, 14 as well 
as Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6) and Interleukin 
8 (IL- 8). This also involves Mitogen-activated protein kinase 
p38 (MAPKp38) and Nuclear factor kappa B (NFkB) signaling 
pathways. This sets up positive feedback cycle in which the MMPs 
breakdown the ECM exposing the chondrocytes to more collagen 
II breakdown products, causing further production of degradative 
enzymes leading to continued degradation of the ECM [56]. 

Studies involving early gene expression after cartilage injury 
have shown increased transcription of molecules involved in both 
anabolic as well as catabolic pathways in articular chondrocytes 
[57]. PTOA cartilage may display loss of proteoglycans, increased 
water content and decreased stiffness of the ECM [58]. There is 
also evidence for increases in anabolism, suggesting a reparative 
reaction to cartilage damage [59]. Lorenz in a study of ACL 
transection in dogs showed significant and sustained increases 
in type II and type I collagen production [60]. In a rabbit lateral 
menisectomy model Hotta et al. [61] showed increased synthesis 
of type II collagen as OA advances and this was highest in the areas 
with moderate degeneration. In vitro studies have also shown 
an increase in type II collagen and aggrecan production after 
cartilage compression [62]. 

In adult mice, Runx2 is expressed in the articular cartilage 
of wild-type mice at the early stage of post-traumatic knee OA, 
induced by surgical transection of the medial collateral ligament 
and resection of the medial meniscus. In this mouse model of OA, 
Runx2 expression in osteoarthritic cartilage parallels collagen-10 
expression but arises earlier than MMP13. After induction of post-
traumatic knee OA by the same surgical procedure, Runx2+/- 
mice displayed decreased cartilage destruction and osteophyte 
formation, along with reduced expression of collagen-10 and 
MMP13, as compared with wild-type mice [63]. Adult articular 
cartilage is an avascular tissue. This is important for cartilage 
function, the environment of the articular chondrocytes and 
maintenance of the ECM. Vascular endothelial growth factor 
(VEGF) is induced by damage to articular cartilage [64]. Hayami 
et al. showed increased expression of VEGF was paralleled by 
decreased expression of chondromodulin-I, an anti-angiogenetic 
factor involved in maintaining the avascularity of articular 
cartilage. Pufe et al. showed that inhibition of VEGF suppressed 
mechanically induced MMP expression [50,65]. 

In an ex vivo model at 24 hours after cartilage injury, Dell’accio 
showed up-regulation of the Wnt-16 pathways and up-regulation 
of Wnt target genes [66]. Nuclear localization of β-catenin was 

also seen. These genes were shown to be up regulated in areas 
of degenerated cartilage but showed normal expression in areas 
of normal cartilage within the same joint. These results implicate 
a reactivation of morphogenetic pathways by mechanical forces 
[67]. Adult mice forced to express β-catenin showed cartilage 
degeneration and increased expression of aggrecan, MMP-9 and 
MMP-13 [68]. In contrast to this, mice deficient in β-catenin 
signaling also show increased chondrocyte apoptosis and 
cartilage degeneration. These results suggest that both excessive 
and insufficient β-catenin levels may impair the homeostasis of 
articular chondrocytes [69]. 

Inflammatory cytokines have also been shown to be elevated 
following joint injury [70]. Lee et al. found increases in resistin, 
a macrophage derived proinflammatory mediator that stimulates 
inflammatory cytokines after joint injury. IL-I, IL-6 and tumor 
necrosis factor alpha (TNFα) have all been shown to be increased 
after joint injury [71]. These inflammatory cytokines further the 
loss of proteoglycans in the ECM through activation of catabolic 
pathways and inhibition of anabolic activities [20,72]. IL-1 
upregulates production of MMPs by increasing nitric oxide (NO) 
production in chondrocytes. Inoue et al. showed IL-1 induces 
expression of MMP-3 and VEGF by chondrocytes and synoviocytes. 
This may be inhibited by IL-1 receptor antagonist [64]. 

Inhibition of Nitric oxide synthase 2 (NOS2) has been shown 
to mitigate the effects of IL-1β [70]. Yorimitsu et al. showed, in 
destabilization of rat knees, that inhibition of NO production by 
IL-4 was protective to cartilage [73]. IL-6 and IL-7 also appear to 
be involved in degradation of cartilage and IL-1 may work partly 
through activation of IL-6 [20]. The catabolic effects of TNFα may 
also be mediated through endogenous IL-6 [74]. Interestingly, 
Clements showed that IL-1β, IL-1β converting enzyme, stromelysin 
1 and iNOS deficient mice all showed an increased progression of 
arthritic changes as well as increased levels of MMP, aggrecanase 
and collagenase in a mouse destabilization model. These results 
suggest that healthy articular cartilage demands a balance 
between anabolism and catabolism. Completely eliminating a 
catabolic cytokine will have unintended effects on the regulation 
of other cytokines and chondrocyte metabolism. This highlights 
the complex nature of the in vivo interactions of different signaling 
molecules and the likelihood of multiple regulatory effects on 
chondrocytes [10]. 

 Pathologic changes in synovium

Regardless of the insult to a particular joint, trauma versus 
instability, changes in the synovium and synovial fluid are 
observed [75]. Lubricin, a joint lubricating molecule produced by 
synoviocytes and superficial chondrocytes, is significantly lower 
in unstable knees and remains so at 12 months post injury [76]. 
Lowered levels of lubricin correlated with an increase in TNFα, 
and inhibition of TNFα resulted in increased lubricin levels [77]. 
The decreased concentrations of lubricin result in decreased 
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boundary lubrication of the articular cartilage and this in turn is 
correlated with cartilage damage [78]. Concentrations of other 
joint lubricant, hyaluronan (HA), and proteoglycan 4 (PRG4), are 
also affected by factors such as TNFα, IL-1β, and TGF-β, known to 
be elevated after joint trauma [79]. 

Cytokines such as IL-1β, IL-6, and TNFα as well as MMP 
levels are significantly elevated in synovial fluid following 
injury such as ACL transection [80]. In a human study looking at 
synovial samples from patients with ACL and meniscal injuries, 
inflammatory patterns in the synovium were similar to those with 
clinical OA. Upstream factors such as Wnt signaling pathways 
are also up-regulated in synovial tissue [81]. Morisugi et al. 
isolated healthy synoviocytes and subjected them to mechanical 
stretch. Significant elevation of gene expression of COX-2, iNOS, 
NFKappaβ, and poly (ADP-ribose) (PAR) synthesis occurred. 
The PAR synthesis is thought to be representative of oxidative 
damage to the DNA. This study highlights that the synovium is 
independently capable of up-regulating cytokines. It is therefore 
possible that in some pathways the synovium is the primary 
tissue up-regulating destructive molecular pathways after 
trauma. For instance, in instability models, it could be that the 
increased stretch on the synovium is a primary event leading 
to up-regulation of inflammatory cytokines and ultimately OA 
development. Yang et al. found that synovial fluid taken from 
injured human knees could decrease GAG content and collagen II 
production in cultivated healthy cartilage. This highlights how the 
synovial fluid can directly affect chondrocyte function [82]. 

 Pathologic changes in bone

As development of OA progresses, subchondral sclerosis and 
osteophyte formation are diagnostic markers of the disease [20]. 
In the case of an impact injury to a joint, such as an intraarticular 
fracture, there is obvious injury to the subchondral bone [83]. 
Most traumatic ligament injuries are also likely to have injury to 
the subchondral bone in form of bone bruises and microfractures 
[84,85]. Histologic changes are seen in the subchondral bone 
of animal models of OA created by joint instability through 
ACL transection or DMM even though no direct injury to the 
subchondral bone has occurred. Boyd et al. showed early 
architectural changes to the cancellous bone after surgical ACL 
transection in dogs. The structure and function of the subchondral 
bone thus appears to be intimately connected with the health of 
the articular cartilage [86]. 

The early bone changes that were observed before visible 
damage to the articular cartilage could be appreciated. Kawaguchi 
et al., using mechanical stress and induction of Runx2 in mice, 
suggested that endochondral ossification signals are likely 
important in the pathogenesis of OA [87]. Kamekura et al. also 
showed Runx+/- mice to have less osteophyte formation after 
surgical destabilization of the knee joint, which correlated with 
articular cartilage destruction [63]. These instability models 
highlight interplay between the subchondral bone and articular 

cartilage, demonstrating that subchondral bone changes are not 
simply later findings seen after cartilage destruction. Numerous 
and complex communication pathways exist between synovium, 
articular cartilage and bone. A greater understanding of the 
interactions of all joint tissues is needed [10]. 

Opportunities for early intervention and Treatment

At present, there are no approved therapies to address the 
acute PTA and prevent the onset of the chronic disease. The 
primary goals of treating patients with PTA are to minimize 
the symptoms and loss of function and reduce pain. Currently, 
treatment for PTA includes anti-inflammatory drugs (non-
steroidal anti-inflammatory drugs or intra-articular injections of 
cortisone), low impact exercise and lifestyle changes, for example, 
losing weight if necessary. However, not all patients benefit from 
the agent usually used and chronic arthritis can develop in the 
damaged region. Once the chronic disease has developed, the 
therapy is the same for the idiopathic forms. If none of these 
measures are effective, then surgery is the next option. However, 
any medical or surgical treatment can have severe side effects or 
risks [8].

Surgical therapies remain the only means of correcting the 
structural and mechanical abnormalities caused by joint injury. 
Early surgical intervention includes anatomic reduction and 
fixation of intra-articular fractures, repair or removal of torn 
menisci, repair or reconstruction of ruptured ligaments, and 
treatment of hemarthrosis if necessary. Surgical intervention 
along with technologic advances in fracture fixation and ligament 
reconstruction will undoubtedly play a role in improved 
treatment of joint injuries. However, a significant number of 
patients still progress to clinical OA even with the best surgical 
care of joint injuries [38]. It appears that greatest breakthroughs 
will likely be in early biologic therapies which could effectively 
block chondrocyte apoptosis and ECM destruction after 
appropriate surgical treatment (Figure 6). It has been recognized 
that chondrocyte apoptosis may be a common pathway in PTOA. 
Caspase inhibitors have been used in rabbits to reduce the severity 
of articular injury [88]. Antioxidants including N-acetylcysteine, 
vitamin E, and superoxide dismutase have also shown promise to 
reduce chondrocyte apoptosis [89,90]. 

Altering the destruction of the ECM after injury appears to be 
a promising place for new therapies. However, inhibitors of MMPs 
have failed up to this point because of adverse events and/ or lack 
of efficacy [91]. Other targets involved in ECM breakdown such 
as Ddr2 receptor, ADAMTS-5, and MAPKp38 and NFkB signaling 
pathways may provide targets for intervention. Cytokine inhibitors 
have been shown to be effective in altering the PTOA in animal 
models. TNFα and IL-1β inhibition have shown promise in animal 
models. IL-10 administration may also alter metabolism, favoring 
more anabolism and have chondro-protective effects [92]. BMPs 
may up-regulate chondrocyte metabolism, with BMP-7 showing 
significant changes in anabolism of chondrocytes [93]. Calcitonin 
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and parathyroid hormone 1-34 have also been used in animals to 
alter cartilage destruction after injury [94]. Numerous attempts at 
disease modifying drugs for OA have failed. Most candidate drugs 
have focused on inhibition of a specific enzyme or inflammatory 
mediator at the later stage of OA. In PTOA, the clear precipitating 
event presents a unique window of opportunity to intervene early 
in the acute post-traumatic period.

Recent studies have revealed that inhibition of a single 
catabolic molecule may not be sufficient for the treatment 
of OA because multiple catabolic factors are involved in its 
pathogenesis. Furthermore, matrix turnover is a normal part of 
cartilage function and damaged ECM must be broken down before 
new matrix can take its place. Therefore, it is likely that potential 
therapeutic targets will need to be more upstream regulators that 
may regulate the expression of multiple cytokines, enzymes, and 
anabolic molecules, thereby maintaining the balance between 
anabolic and catabolic activity of articular chondrocytes and other 
joint tissue cells such as synoviocytes [91]. 

Recent studies have revealed that biological and mechanical 
abnormalities may affect transcriptional activity of specific 
transcription factors in articular chondrocytes. Transcription 
factor Sox9 is critical for the formation of cartilage, including 
articular cartilage, but its role in the maintenance of adult 
articular chondrocyte function remains to be elucidated. 
Transcription factor Nfat1 plays an important role in maintaining 
the physiological function of adult articular chondrocytes. 
Transcription factor Runx2 [63] and β-catenin transcriptional 
signaling may also be involved in the pathogenesis of OA via 
regulating the expression of anabolic and catabolic molecules in 
articular chondrocytes. These specific transcriptional signaling 
molecules that regulate the expression of multiple catabolic and/
or anabolic factors in articular chondrocytes may be potential 
upstream targets for the prevention and treatment of PTOA 
[68,69]. 

Despite the use of all these agents has proven effective in 
reducing the progression of chronic PTA in animal models, only 
one small, randomized pilot clinical trial has been conducted. 
Currently, IL-1Ra is the only agent that has been used as an 
anticytokine approach in patients with acute PTA. In this study, 
it has been observed that IL-1Ra injected intra-articularly within 
30 days of ACL injury (n=6) reduced pain and improved function 
at 2 weeks compared to placebo (n=5). Although this strategy has 
proved to be efficacious in the early postinjury phase, the results 
obtained have not been confirmed in larger studies [95]. A large 
number of molecules have been explored as potential targets for 
treatment in preclinical studies. Among these MMPs or caspase 
inhibitors, growth factors, antioxidants and even mesenchymal 
stem cells have shown an interesting effect as potential disease 
modifying drugs in PTA animal models [96,97]. Since activation 
of inflammatory mechanisms is considered to be critical to 

development of chronic disease, anti-inflammatory interventions 
may represent the best available opportunity to intervene early 
in the acute post-traumatic period. A study carried out by Lewis 
et al supports this hypothesis using an animal model of the tibial 
plateau fracture. They observed that MRL/MpJ mice, which are 
known to have enhanced regenerative abilities in response to 
injury, exhibited lower levels of inflammation than wild-type mice, 
were protected from the progression of PTA [98]. In particular, 
anticytokine therapy has demonstrated a marked efficacy as 
preventative agents of the long-term onset of chronic PTA. IL-1 
inhibition, through knockout of IL-1β, intra-articular injection 
or adenoviral transfer of IL-1Ra and retroviral transduction to 
overexpress IL-1Ra, is resulted therapeutically effective in animal 
models of surgically induced PTA [99].

Blocking of TNF increased the production of lubricin and 
decreased the release of GAG, resulting in a chondroprotective 
effect in a rat model of PTA [77]. Recently, the use of lentiviral-
mediated RNA interference silencing of IL-1b and TNF to treat 
PTA in rabbits displayed reduced cartilage damage and speed of 
degeneration [100]. However, although both cytokines play a role 
in the post-traumatic acute phase, different studies performed in 
mouse models assert that intra-articular inhibition of IL-1, rather 
than TNF, may reduce the development of chronic PTA [101,102].
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