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Abstract

This study delves into the design of promising Type II anti-diabetic agents acting as inhibitors of Dipeptidyl Peptidase-IV (DPP-IV). Given 
the significance of Type 2 Diabetes Mellitus (T2DM) as a prevalent metabolic disorder, the pursuit of improved therapies is essential. Leveraging 
3D QSAR and pharmacophore Modeling techniques, this research identifies critical structural elements pivotal to the biological efficacy of cyan 
pyrrolidine derivatives. The objective is to provide invaluable insights fostering the development of potent Type II anti-diabetic agents.
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Introduction

Type 2 Diabetes Mellitus (T2DM) is a widely recognized 
chronic metabolic ailment associated with heightened morbidity 
and mortality. Notable trials such as the Diabetes Control and 
Complications Trial, the Stockholm Diabetes Intervention 
Study, and the United Kingdom Prospective Diabetes Study 
have substantiated the advantages of enhanced glucose control 
in reducing complications. Underlying T2DM are three core 
anomalies: insulin resistance, diminished insulin secretion, 
and excessive hepatic glucose production. Current therapeutic 
options encounter limitations encompassing safety concerns, 
efficacy sustainability, and dosing inconveniences. Adverse effects 
commonly linked to existing agents encompass hypoglycemia, 
weight gain, and gastrointestinal intolerance. Dipeptidyl 
peptidase-4 (DPP-4) inhibitors, exemplified by saxagliptin, 
offer distinctive mechanisms with potential for improved safety, 
tolerability, and effectiveness. Approved agents such as sitagliptin 
(Januvia®) and vildagliptin (Galvus®) exemplify this class [1-10].

 
Methods

This article presents a comprehensive exploration involving 
3D QSAR and pharmacophore modeling applied to substituted 
cyan pyrrolidines as potential Type II anti-diabetic agents and 
DPP-IV inhibitors. Cyan pyrrolidines, a chemically significant 
class, have shown diverse medical relevance. Various researchers 
have reported the anti-diabetic potential of cyan pyrrolidine 
derivatives. The utilization of 3D QSAR aims to unravel the 
intricate three-dimensional structural attributes pivotal for their 
anti-diabetic activity. The obtained 3D QSAR model (characterized 
by a squared correlation coefficient, r2, of 0.9945 and a cross-
validated squared correlation coefficient, q2, of 0.9866) attests to 
its statistical significance and predictive proficiency. The insights 
derived from this model shed light on the structural motifs 
driving the inhibitory potency of cyan pyrrolidines. Additionally, 
pharmacophore modeling has been employed to discern the 
structural prerequisites crucial for the biological efficacy of 
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these compounds. This study underscores the critical role of 
pharmacophore modeling and 3D QSAR analysis in elucidating 
the intricate structural attributes that underpin the efficacy of 
substituted cyan pyrrolidines as Type II anti-diabetic agents and 
DPP-IV inhibitors. The outcomes have potential implications for 
advancing the development of potent therapies in the realm of 
Type II diabetes treatment [11-15].

Type II Diabetes Mellitus (T2DM) is a persistent metabolic 
ailment characterized by three primary anomalies: insulin 
resistance, diminished insulin secretion, and excessive hepatic 
glucose production. However, existing treatments exhibit 
limitations in terms of safety, effectiveness, and tolerability. To 
address this, there is potential in Dipeptidyl Peptidase-IV (DPP-
IV) inhibitors like saxagliptin, which operate through distinct 
mechanisms. This study delves into the creation, correlation 
of structure and activity, and modeling of pharmacophores 
for cyanopyrrolidine derivatives, aiming to establish them as 
potential DPP-IV inhibitors [16-20]. Saxagliptin belongs to 

the category of oral antidiabetic agents referred to as DPP-IV 
inhibitors or “incretin enhancers.” The phase III trial initiative for 
saxagliptin encompassed investigations involving both standalone 
administration and concurrent use with other established 
antidiabetic medications such as metformin, sulphonylureas, and 
thiazolidinediones. Among the evolving classes of antidiabetic 
drugs for type 2 diabetes, DPP-IV inhibitors, including vildagliptin 
(Galvus®) and sitagliptin (Januvia®), are already endorsed and 
employed clinically. The appeal of these agents lies in their ability to 
sustainably lower HbA1c levels-a pivotal marker of blood glucose 
management-via an orally administered, well-tolerated approach, 
distinguishing them from many conventional oral antidiabetic 
drugs. The invention primarily revolves around DPP4 inhibitors, 
particularly in the context of a novel formulation involving 
cyano-pyrrolidine-based compounds. Saxagliptin, represented as 
(1S,3S,5S)-2-(2S)-2-amino-2-(3-hydroxyadamantan-1-yl)acetyl)-
2-azabicyclo[3.1.0]hexane-3-carbonitrile, falls within the scope of 
cyano-pyrrolidine-based DPP4 inhibitors. Its chemical structure is 
as follows: [Chemical formula representation] (Figure 1).

Figure 1.

Saxagliptin, in the form of its hydrochloride salt, is marketed 
under the trade name ONGLYZA® by Bristol-Myers Squibb for 
the treatment of type 2 diabetes mellitus. Each film-coated tablet 
of ONGLYZA for oral use contains either 2.79 mg saxagliptin 
hydrochloride (anhydrous) equivalent to 2.5 mg saxagliptin, or 
5.58 mg saxagliptin hydrochloride (anhydrous) equivalent to 5 
mg saxagliptin and the following inactive ingredients: lactose 
monohydrate, microcrystalline cellulose, croscarmellose sodium, 

and magnesium stearate. In addition, the film coating contains 
the following inactive ingredients: polyvinyl alcohol, polyethylene 
glycol, titanium dioxide, talc, and iron oxides. Thermodynamic 
Degradation of Saxagliptin, cyclic amidine (“AMD”) and 
oxamidine (“OXAMD”) respectively. The hydrolysis of amidine to 
diketopiperazine occurs in the presence of water (Figure 2)[21-
25].

Figure 2.
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The intramolecular cyclization reaction leading to the 
formation of a cyclic amidine can occur in both the solid state and 
the solution state. Furthermore, this reaction can be exacerbated 
by utilizing processing conditions like wet granulation, roller 
compaction, or tableting. This chemical instability necessitates 
the provision of conditions and excipients that either minimize 
or prevent this undesired reaction during the manufacturing 
of saxagliptin formulations. The solid-state structures of 
(lS,3S,5S)-2-[(2S)-2-amino-2-(3-hydroxy-l-adamantyl)acetyl]-2-
azabicyclo[3.1.0]hexane-3-carbonitrile, referred to as Saxagliptin, 
can exist in the form of stable amorphous and crystalline solids. 
Crystalline solids exhibits long-range order, while amorphous 
solids lack this order, resembling a frozen liquid with solid-like 
rheological properties. When a compound like saxagliptin is 
transformed into an amorphous state but not fully dispersed 
within a polymer matrix, leading to amorphous clusters embedded 
in the polymer, it is termed a “glass suspension.” This results in a 
glass suspension with two distinct glass transition temperatures, 
arising from the amorphous API and the polymer.

Discussion

The discussion section delves into the methodology, results, 
and implications of the study. It outlines the synthesis of 
saxagliptin, a DPP-IV inhibitor, using 3D QSAR and pharmacophore 
modeling to uncover structural features crucial for Type II anti-
diabetic activity. A predictive model was created using a training 
set of molecules, with statistical analysis evaluating its forecasting 
accuracy. The study highlights molecular attributes impacting the 
inhibitory potency of cyanopyrrolidine derivatives, as identified 
through pharmacophore modeling for interaction with the DPP-
IV receptor. Amorphous solids generally exhibit greater solubility 
compared to crystalline forms due to their lack of long-range order 
and higher surface area. To enhance the solubility of a crystalline 
solid, transforming the active pharmaceutical ingredient into an 
amorphous form is advantageous. When a crystalline material is 
heated to its melting point (Tm), it transitions from a solid to a liquid 
state, with reversible behavior upon cooling. Rapid cooling below 
Tm can prevent crystallization, resulting in a supercooled liquid. 
If this supercooled liquid is further cooled to its glass transition 
temperature (Tg), molecules kinetically solidify, forming a glass. 
While molecules in a supercooled liquid have higher mobility than 
in a glassy state, the latter still exhibits some mobility [26-30].

Due to this mobility, it is beneficial for the glass transition 
temperature of the active pharmaceutical ingredient to be 
significantly higher (e.g., at least 20°C, preferably 30°C, or even 
40°C) than the actual storage conditions. Amorphous Saxagliptin, 
with a relatively low Tg of about 54°C, tends to recrystallize under 
storage conditions. Stabilizing the amorphous form by increasing 
its Tg is crucial to prevent recrystallization. This can be achieved 
by mixing the API with a second component, typically polymers 
that decrease the mobility of Saxagliptin molecules and thwart 
recrystallization. Two approaches can be used to prepare glass 

solutions via the spray drying technique: using Saxagliptin as a 
salt or as a free base in situ with an acid. This yields Saxagliptin 
dispersed within a polymer-formed matrix [31-40]. The 
intramolecular cyclization process that leads to the formation 
of a cyclic amidine can take place in both the solid and solution 
states. Moreover, this reaction can be intensified by employing 
various processing conditions such as wet granulation, roller 
compaction, or tableting. This chemical instability necessitates the 
establishment of conditions and additives that can either reduce 
or prevent this undesirable reaction during the manufacturing 
of saxagliptin formulations. The solid-state structures of 
Saxagliptin, specifically (lS,3S,5S)-2-[(2S)-2-amino-2-(3-hydroxy-
l-adamantyl)acetyl]-2-azabicyclo[3.1.0]hexane-3-carbonitrile, 
can exist in the form of both stable amorphous and crystalline 
solids. Crystalline solids exhibit a well-ordered structure over long 
distances, whereas amorphous solids lack this order, resembling a 
frozen liquid with solid-like rheological properties [41-45].

When a compound like saxagliptin transitions into an 
amorphous state but isn’t fully dispersed within a polymer matrix, 
resulting in amorphous clusters embedded in the polymer, it is 
referred to as a “glass suspension.” This leads to a glass suspension 
that possesses two distinct glass transition temperatures, 
stemming from the amorphous active pharmaceutical ingredient 
(API) and the polymer. The discussion section delves into the 
study’s methodology, outcomes, and implications. It outlines the 
synthesis of saxagliptin, a DPP-IV inhibitor, using 3D QSAR and 
pharmacophore modeling to identify critical structural features 
for Type II anti-diabetic activity. A predictive model was developed 
using a training set of molecules, and its forecasting accuracy was 
assessed through statistical analysis. The research underscores 
the molecular attributes that influence the inhibitory potency of 
cyanopyrrolidine derivatives, as identified by pharmacophore 
modeling for interaction with the DPP-IV receptor. Amorphous 
solids generally exhibit higher solubility compared to crystalline 
forms due to their lack of long-range order and greater surface 
area. Converting a crystalline solid into an amorphous form can 
enhance its solubility. When a crystalline substance is heated to 
its melting point (Tm), it transforms from a solid to a liquid state 
and can revert upon cooling. Swift cooling below Tm can prevent 
crystallization, yielding a supercooled liquid. If this supercooled 
liquid is further cooled to its glass transition temperature (Tg), 
molecules solidify kinetically, forming a glass. Although molecules 
in a supercooled liquid have higher mobility compared to those 
in a glassy state, the latter still maintains some level of mobility 
[46-50].

Because of this inherent mobility, it’s advantageous for 
the glass transition temperature of the active pharmaceutical 
ingredient to be substantially higher (e.g., at least 20°C, preferably 
30°C, or even 40°C) than the actual storage conditions. Amorphous 
Saxagliptin, with a relatively low Tg of approximately 54°C, tends 
to revert to a crystalline state under storage conditions. Elevating 
the Tg of the amorphous form is essential to prevent such 
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recrystallization. This can be achieved by blending the API with a 
secondary component, usually polymers that reduce the mobility 
of Saxagliptin molecules and hinder recrystallization. The spray 
drying technique can be employed in two ways to create glass 
solutions: utilizing Saxagliptin as a salt or as a free base in situ 
with an acid. This results in Saxagliptin being dispersed within a 
polymer-formed matrix. Critical Quality Attributes (CQAs) of the 
drug substance were defined, and strategies to control their impact 
on product quality were presented. Through risk assessments of 
the manufacturing process, Critical Process Parameters (CPP) 
and Key Process Parameters (KPP) were identified. Uni- and 
multivariate experiments were conducted to define the design 
space within the studied ranges. Acceptable ranges for all process 
parameters were established to ensure consistent attainment 
of defined CQAs. A five-batch campaign within the defined 
design space at the commercial manufacturing site validated 
the approach. In essence, the Quality by Design (QBD) approach 
to saxagliptin drug substance manufacturing yielded enhanced 
process knowledge and a manufacturing design space that 
consistently produces high-quality drug substances. The process 
is considered to be well under control [51-65].

Process Description 

Stage 1

The reaction involves (1S, 3S, 5S)-2-(2-azabicyclo-[3.1.0]
hexane-3-carboxamide methane sulfonic acid reacting with 
(2S)-2-{[(benzyloxy)carbonyl]amino}-2-(3-hydroxyadamantan-
1-yl)acetic acid in the presence of 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride, 1-hydroxybenzotriazole 
hydrate, and diisopropylethylamine. This yields Benzyl-N-[(1S)-
2-[(1S,3S,5S)-3-carbamoyl-2-azabicyclo[3.1.0]hexan-2-yl]-1-(3-
hydroxyadamantan-1-yl)-2-oxoethyl]carbamate (Stage-I) [66-70]. 

Stage 2

B e n z y l - N - [ ( 1 S ) - 2 - [ ( 1 S , 3 S , 5 S ) - 3 - c a r b a m o y l - 2 -
azabicyclo[3.1.0]hexan-2-yl]-1-(3-hydroxyadamantan-1-yl)-
2-oxoethyl]carbamate from Stage-I reacts with trifluoroacetic 
anhydride in the presence of ethyl nicotinate, leading to the 
pure Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-cyano-2-azabicyclo[3.1.0]
hexan-2-yl]-1-(3-hydroxyadamantan-1-yl)-2-oxoethyl)carbamate 
(Stage-II) [71-75].

Stage 3

In his step, Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-cyano-2-
azabicyclo[3.1.0]hexan-2-yl]-1-(3-hydroxyadamantan-1-yl)-2-
oxoethyl)carbamate (Stage-II) reacts with hydrogen gas in the 
presence of palladium catalyst and is treated with HCl, resulting in 
saxagliptin HCl dihydrate tech material [76-78].

Stage 4

The product from Stage-III (Saxagliptin HCl dihydrate tech) 

is purified and dried to obtain pure saxagliptin HCl dihydrate 
product [79]. 

3D QSAR and Pharmacophore Modeling of Substituted 
Cyanopyrrolidines as Potential Type II Anti-Diabetic Agents. In 
the realm of medicinal chemistry, 3D QSAR and pharmacophore 
modeling have been employed to explore the promising potential 
of substituted cyan pyrrolidines as Type II anti-diabetic agents, 
particularly as Dipeptidyl Peptidase-IV (DPP-IV) inhibitors. These 
cyanopyrrolidines, possessing diverse medical functions, have 
garnered attention for their significant therapeutic applications. 
Several studies have been conducted to investigate their viability 
as Type II anti-diabetic agents. The application of 3D QSAR 
techniques aimed to unveil the intricate three-dimensional 
structural elements pivotal for eliciting Type II anti-diabetic 
activity. The outcomes of the 3D QSAR analysis, characterized by a 
squared correlation coefficient (r²) of 0.9945 and a cross-validated 
squared correlation coefficient (q²) of 0.9866, underscore the 
statistical significance and exceptional predictive capacity of the 
model. These findings yield critical insights into the structural 
attributes governing the inhibitory potential of cyanopyrrolidines.

Additionally, pharmacophore modeling was harnessed to 
discern the essential structural features contributing to the 
biological efficacy of cyanopyrrolidines. The knowledge garnered 
from this investigation holds paramount importance for shaping 
the development of potent Type II anti-diabetic agents, particularly 
as DPP-IV inhibitors. Type II diabetes, a prominent metabolic 
disorder with global prevalence, underscores the significance of 
this research. This ailment stems from impaired insulin effects 
on the liver and skeletal muscles, coupled with diminished 
insulin secretion. Glucagon-like peptide-1 (GLP-1) emerges as an 
insulinotropic hormone with anti-diabetic potential, marked by 
glucose-dependent insulin stimulation and glucagon secretion 
inhibition. However, the rapid inactivation of GLP-1 by Dipeptidyl 
Peptidase-IV (DPP-IV) curtails its clinical utility. To address this, 
orally active DPP-IV inhibitors have been pursued to extend GLP-1 
activity, resulting in reduced blood glucose levels.

Previous studies involving GLP-1 analogs and DPP-IV 
inhibitors have shown promise in improving cardiovascular 
disease outcomes associated with diabetes. However, challenges 
such as side effects and potency limitations persist. This 
underscores the potential of computer-aided drug design, as 
exemplified by quantitative structure-activity relationship (QSAR) 
studies and pharmacophore modeling. These methodologies shed 
light on the structural attributes underpinning biological activity. 
In the current study, a series of cyanopyrrolidine derivatives were 
subjected to QSAR studies and pharmacophore modeling using 
VLife-MDS 4.3 software. Computational analyses were executed 
on standard hardware and software configurations. IV inhibitory 
activities compounds with reported DPP-IV inhibitory activities, 
was utilized for model development [80-82].
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Ligand preparation, molecular alignment, and descriptor 
generation were integral to the QSAR analysis. A meticulous 
selection process led to the identification of a robust QSAR model, 
marked by high correlation coefficients and statistically significant 
F and p values. Noteworthy descriptors like E-550, S-1165, and 
E-1204 emerged, revealing steric and electrostatic interactions 
crucial for anti-diabetic activity. Further, pharmacophore modeling 
delineated key interaction features between ligands and receptors, 
offering a blueprint for rational drug design. In conclusion, this 

study’s integration of 3D QSAR and pharmacophore modeling 
techniques presents a holistic approach to designing effective Type 
II anti-diabetic agents. The insights gained from these analyses 
hold promise for guiding future drug development endeavors, 
yielding compounds with enhanced potency and improved 
pharmacological profiles. Ultimately, this work contributes to the 
pool of knowledge driving the discovery of novel DPP-IV inhibitors 
with potential therapeutic applications in diabetes management 
(Figure 3-7 and Table 1,2).

Figure 3: Reaction chemistry.
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Figure 5: Showing alignment of molecules.

Figure 6: Field point of selected QSAR model.

Table 1: Presenting the molecules used in QSAR study.

Coin pound R Ri OPP-IVICit(n!)

83 H H 99

8b 6.7-(mtcJ) H 63

8c 6.7-(OMc) -(Cfb):OH 45

8d 6.7-(mic) isopropyl! 47

St 6.7-(mk)i Bet1zyl 97

8( 6.7-(mk)i ltrl·B111)’1 73

8g 6--0 1< tert·Bllt)’I 72

8h 7-0 1c ttn·Bllt)’I 195

93 H -CH(4-FC’..Ji5)l 211

9b H Nicolinoai1tik 87
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9c H Bet120yl 123

!Oa H H 238

!Ob H Bet1zyl 252

IOc H Ethyl 140

!Od H lsopropyl 212

!Oc H ttrt·Bllt)’I 251

Ila 3,4-0Mc H 116

lib H CH2O k 182

lie H lsopropyl .>05

Table 2: Derivatives under study with observed and predicted activity.

Sr. No Compound 
code

Observed ac-
tivity Predicted activity

1 8a 2 0.89

2 8b 1.8 1.2

3 8c 1.65 1.86

4 8d 1.67 0.69

5 8e 1.99 1.02

6 8f 1.86 1.66

7 8g 1.86 1.61

8 8h 2.29 0.59

9 9a 2.36 0.25

10 9b 1.94 1.59

11 9c 2.09 2

12 10a 2.38 1.87

13 10b 2.4 1.9

14 10c 2.15 1.57

15 10d 2.33 0.23

16 10e 2.4 1.25

17 11a 2.06 2.09

18 11b 2.26 1.52

19 11c 2.48 1.76
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