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Introduction 

The commercially available LTA is hygroscopic and turns 
brown due to the formation of lead oxide. Therefore, LTA should 
be stored in absence of moisture, kept tightly sealed and stored 
under 10oC in the dark and in the presence of about 5% glacial  

 
acetic acid. LTA is very toxic and may be absorbed through the skin. 
Due to the high toxicity the reagent should be handled with care 
in chemical fume hood. It is soluble in hot acetic acid, benzene, 
cyclohexane, chloroform, and carbon tetrachloride.

Abstract 

Lead tetraacetate (LTA),a versatile oxidizing agent for different functional groups, has been widely used for oxidative decarboxylation of 
carboxylic acid, cleavage of 1,2-diol, formation of the cyclic ether, acetoxylation, methylation, dehydrogenation etc. The present micro review 
describes the utility of LTA in 1,2-glycol-cleavage and decarboxylation of carboxylic acid.
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Use of LTA in Organic Synthesis

1,2-glycol-cleavage

Scheme 1: Cleavage of diols.

LTA is one of the most frequently used reagents for the 
cleavage of glycols and for the preparation’s carbonyl compounds. 
The reactions are performed either in aprotic solvents (benzene, 
nitrobenzene,1,2-dichloroethane) or in protic solvents such 
as acetic acid [1]. The role of LTA in glycol cleavage is highly 

dependent on the structure and stereochemistry of the substrate. 
The cleavage of diols proceeds via a cyclic intermediate [2]. as 
shown in Scheme 1. The cleavage of cis diol occurs more easily 
than the trans-diol which does not permit the easy formation of 
the cyclic intermediate. Some examples are given in Scheme 2.
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Scheme 2: Cleavage of diols 1, 3, 4 and 6 with LTA.

The diol 1 on treatment [3] with LTA in benzene affords 
aldehyde 2 but the diols 3 and 4 with LTA suffer4 cleavage and 
yield ketone 5. 1,2-Glycol cleavage [4] by LTA has been widely 
applied for the oxidation of carbohydrates and sugars [5]. The 
diol 6 on oxidation with LTA in acetic acid yields the aldehyde 7. 
The reactivity of individual glycol units in sugar molecules is often 
different and thus the LTA reaction is helpful tool for structural 
determination and for degradation studies in carbohydrate 
chemistry [6]. It has been observed that trans-1,2-diols which 
are cleaved slowly with LTA in acetic acid are readily cleaved if 
pyridine is used as reaction solvent [7].

The cyclopropene ester 9, prepared from the bromo derivative 
of cis-1,2-hydrocatechol 8, on treatment with LTA produces [8] the 
cyclopropane aldehyde 10 which is a potential intermediate for 
the cis-pyrethroid class of insecticides. The trans-diol 12, obtained 
from D-mannitol 11, with LTA affords ketone [9] 13 in unspecified 
yield. Reduction of 13 with sodium borohydride produces the 
alcohol 14 which is utilized for the synthesis of mixed-acid 
phospholipids polyunsaturated fatty acid as shown in Scheme 3.

Decarboxylation of carboxylic acid

Oxidative decarboxylation of carboxylic acids by LTA has 
been frequently used in the synthesis of terpenoid compounds. 

Oxidative decarboxylation by LTA depends on the conditions of 
reaction, core agents and structure of acids and hence a variety of 
products such as acetate esters, alkanes, alkenes, and alkyl halides 
can be obtained [10]. The reactions are performed [10] in nonpolar 
solvents (benzene, carbon tetrachloride) or polar solvents (acetic 
acid, pyridine, HMPA). Decarboxylation of primary and secondary 
carboxylic acids usually affords acetate esters as major products. 
If a mixture of acetate and olefin is formed, it is recommended to 
perform the reaction in presence of potassium acetate [10]. The 
cyclohexane carboxylic acid 15 if heated under reflux with LTA in 
benzene furnishes a mixture of acetate 16 and the olefin 17 but 
only the acetate 16 is produced in high yield when heated with 
potassium acetate in acetic acid (Scheme 4).

The monocarboxylic acid on oxidation with LTA in presence of 
copper (II) salts gives mainly alkenes (Scheme 5). The free radical 
mechanism is generally accepted [11]. Rosefuran 19 has been 
obtained in crude form (70%) by the oxidative decarboxylation 
of 3-methyl-2-furoic acid 18 with LTA in boiling benzene in the 
presence of copper acetate [12]. Bisdecarboxylation [13] of 
compounds containing carboxyl groups on adjacent carbons can 
be achieved with LTA in the presence of oxygen and pyridine. 
Thus, the dicarboxylic acid [14] 20 on decarboxylation affords 
the tetrahydrobenzene 21. Similarly, the acid [15] 22 if subjected 

http://dx.doi.org/10.19080/OMCIJ.2021.10.555788


Organic and Medicinal Chemistry International Journal 

How to cite this article: Ajoy K B, Betzabeth B, Alexis M, Liadis B, Elvia V C, et al. Lead Tetraacetate in Organic Synthesis. Organic & Medicinal Chem 
IJ. 2021; 10(3): 555788. DOI: 10.19080/OMCIJ.2021.09.555788

003

to bisdecarboxylation can yield compound 23 (Scheme 6). The 
compounds containing germinal carboxyl groups (malonic acid 

derivatives) 24 are decarboxylated with LTA to give gem diacetate 
which can easily be hydrolyzed to ketone [16] 25.

Scheme 3: Obtention of 10 and 13 by treatment of 8 and 11 with LTA, respectively.

Scheme 4: Decarboxylation of 15 with LTA.

Scheme 5: Decarboxylation of 18 with LTA in boiling benzene in the presence of copper acetate.
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Scheme 6: The compounds 21, 23 and 25 are obtained respectively by treatment of 20, 22 and 24 with LTA.

The LTA decarboxylation of tertiary carboxylic acids gives a 
mixture of alkenes and acetate esters. O-methylpodocarpic acid 
26 on heating with LTA yields a mixture of olefins [17] 27, 28, 
29 and acetates 30 and 31. In addition a lactone 32 is obtained 
(Scheme 7). Banerjee and collaborators [18] have observed that 
the decarboxylation of the acid 34, prepared from the cyclic ether 
33, with LTA, pyridine and DMF [19] affords a mixture of olefins 35 

(scheme 8). The transformation of 35 into the ketone 36 is affected 
in two steps: (a) demethoxylation [19] with sodium iodide, boron 
tribromide, 15-crown ether-5, (b) oxidation [20] with Jones 
Reagent. Bromination of 36 followed by dehydrobromination 
and aromatization respectively yield tetraol 37 in 60% Yield. The 
tetraol 37 is a potential intermediate [21] for the synthesis of 
diterpenoid quinones cryptotanshinone and tanshinone IIA.

Scheme 7: Decarboxylation of tertiary carboxylic acid 26 with LTA.
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Scheme 8: Decarboxylation of tertiary carboxylic acid 34 with LTA, to obtain 37.

Masamune and collaborators [19] have also studied the 
decarboxylation of tertiary carboxylic acid with LTA in relation 
of the studies on the synthesis of the terpene glutinosone. The 
lactone 39, prepared from the ketoester 38, on alkaline hydrolysis 
and acetylation respectively is converted to the acid 40 (Scheme 

9). The acid 40 on being heated with LTA and DMF undergoes 
decarboxylation and produces a mixture of olefins 41. Treatment 
of 41 with methanolic potassium hydroxide (5%) followed by the 
addition of triphenyl methyl fluoborite afford glutinosone 42.

Scheme 9: Decarboxylation of tertiary carboxylic acid 40 with LTA.

Oxidative decarboxylation reaction has proved usefull in the 
synthesis [22] of sesquiterpene furoventalene  46 as depicted in 
the scheme 10. m-Anisic ester 43 is converted into the ester 44 
in three steps (reductive alkylation, metalation, and alkylation). 
Acidic hydrolysis and cyclization of the ester 44 yield dihydro 

benzofuran 45. Alkaline hydrolysis and oxidative decarboxylation 
with LTA lead the formation of furoventalene 46. Banerjee and 
collaborators [23] have utilized oxidative decarboxylation for 
the synthesis of sesquiterpene (±) frullanalide the details are 
described in scheme 11.
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Scheme 10: Decarboxylation of 45 with LTA to obtain 46.

Scheme 11: Decarboxylation of 48 with LTA to obtain 52.

Scheme 12: Oxidative decarboxilation of 53 with LTA and synthesis of Callitrisic acid 56.
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The ketone acid 48, prepared from the cyclic ether 47, on 
heating with LTA and copper (II) acetate undergoes oxidative 
decarboxylation yielding enone 49. Alkylation of 49 with ethyl 
bromoacetate produces ketoester 50 which on reduction with 
sodium borohydride in methanol followed by stirring with 
hydrochloric acid afford the lactone 51. As the lactone 51, has 
already converted [24] into (±) frullanalide 52 the present 
synthesis of 51 constitutes a formal total synthesis [25] of 
frullanalide 52.

Another interesting use of oxidative decarboxylation [26] 
with LTA is shown in scheme 12. The acid 53 on decarboxylation 
with LTA gives a mixture of olefins 54. Epoxidation followed 
by hydrolysis with Lewis acid produces aldehyde 55 which on 
methylation and oxidation respectively afford Callitrisic acid 56. 
The above-mentioned examples exhibit the importance of LTA in 
the synthesis of terpenoid compounds.

Other Applications

LTA has also been utilized for acetoxylation [27,28] of ketones 
in enol form, nuclear methylation [29], oxidation [30] of phenols. 
Alkyl sulfides [31], alkyl hydroperoxides [32] and organometallic 
compounds are also oxidized33 by LTA. Several cyclic ethers have 
been synthesized by LTA oxidation [34].

Conclusion

The present review describes application of LTA in cleavage 
of diols and decarboxylation of carboxylic acids. In near future we 
expect to see more new applications of LTA in organic synthesis.
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