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Introduction
Metals are extensively used by industries in various 

applications such as electronics, materials, catalysts, chemicals, 
modern low-carbon energy technologies [1] (nuclear, solar, 
wind, bioenergy, carbon capture and storage (CCS)) and 
electricity grids [1,2]. Greater pressure has been placed on metal 
utilisation because of population growth coupled with a higher 
standard of living. Furthermore, industrialisation has led to 
the increasing demand for critical metals, as many of these are 
required in modern technologies. This is causing concern over 
the supply of critical metals for future generations. Therefore, 
according to Hunt et al. [3] the sustainable use of metals is vital 
so that both the current and future generations have access to 
them without hitches. Industries or nations classify metals as 
critical depending on the purpose and need of assessment [4]. 
Some metals have been identified as critical metals because of 
their significance [3]. However, elements with significant supply 
restriction issues (geopolitical issues, conflicts, international 
monopolies and mining as a by-product of other elements) 
and those which would have a dramatic impact on business or 
economy if limited are considered critical [5]. The top 14 metals 
like tellurium, indium, tin, hafnium, silver, dysprosium, gallium, 
neodymium, cadmium, nickel, molybdenum, vanadium, niobium 
and selenium are critical and commonly needed in these 
emergent low carbon energy technologies [1,6]. 

Furthermore, industries generate a variety of wastes which 
contain heavy metals [7]. Electroplating and mining companies  

 
generate large amounts of mercury, lead, cadmium, silver, 
copper, and zinc ions [8,9]. More so, papers, metals, electrical 
and electronic equipment wastes contain precious metals 
like Ag, Au [10]. And some of these metals are regarded as 
technology metals [11,12]. Unfortunately, the reserves of high-
grade ores of these metals are depleting [7]. Therefore, there is a 
need to recycle and recover these metals from the environment. 
Moreover, some heavy metals can be hazardous even at low 
concentrations [9,13]. According to Nagajyoti et al. [14] heavy 
metals such as Cd, Cu, Pb, Cr and Hg are major environmental 
pollutants, particularly in areas with high anthropogenic 
activities.  Thus, when these metals are in bioavailable forms and 
at excessive levels, they have the potential to become toxic to 
plants and consequently the environment [14]. In addition, there 
are usually trace amounts of iron, copper, manganese, calcium, 
and other metals found naturally in many raw materials [15,16]. 
These metal ions are normally found in processing water as well, 
and may infiltrate processing [15]. Moreso, presence of metal 
ions in a process or  product can bring about scaling, chemical 
degradation, discoloration, precipitation, emulsion instability, 
rancidity, and reduce; quality, consumer appeal, shelf-life and 
ultimate value [15,17,18].

Fortunately, chelating agents have been used to eradicate 
these problems by binding metal ions via N, O, S atoms as the 
case may be [19]. When metal ions are bonded to chelant, 
the metal becomes blocked from undesired interaction [20]. 
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Hence, Chelating agents find use in paper pulp bleaching 
[21,22], detergents and cleaning [23], water treatment and 
food industries [24,25]. Chelants have also been used for the 
extraction of metals [22,26-33]. Other applications where 
chelating agents are used include fertilisers [22,34-38],  
photography [39]  and  pharmaceuticals [40,41].  They are also 
applied in nuclear industry, soil remediation [42,43] and textile 
treatment [44]. Additionally, chelators are used in many products 
to prevent; chemical degradation, discoloration, precipitation, 
emulsion instability and rancidity; thus increasing consumer 
appeal, shelf-life, and ultimate value [17]. Chelants are also used 
for heavy metal detoxification [45], treatment of antitumor [46] 
and in radioimmuno-diagnostics [47,48]. They are potent agents 
for solubilising heavy metals from polluted soils [44,49–51] and 
as root canal lubricants [52]. Sometimes chelating agents are 
used as precursors of catalysts [53,54]. Chelants are also used 
to prevent scale [22,55]. They can also enhance the growth of 
plants by removing toxic metals from the soil [56,57]. Because 
of their wide needs, the overall chelating agents growth was 
4.0% annually during 2009-2014 [58] and the trend is likely to 
increase.

Figure 1: Percentages of applications of commonly used 
chelating agents, APCs [60].

Incidentally, classical chelating agents such as 
aminopolycarboxylates, aminophosphonates and phosphates 
are used to chelate metals with substantial stability [8]. 
Phosphonates are extensively used as scale inhibitors 
[20,59]; and as ingredients in detergents for cleaning 
processes due to their ability to effectively bind Ca(II) 
[20]. Traditional phosphonate chelating agents include: 
diethylenetriaminepentakis(methylenephosphonic acid), 
DTPMP; 1,2 –diaminoethanetetrakis (methylenephosphonic 
acid), EDTMP; 1-hydroxy ethane (1,1-diylbis-phosphonic acid), 
HEDP; phosphonobutanetricarboxylic acid, PBTC; nitrilotris 
(methylenephosphonic acid), NTMP; N-phosphonomethylgycine, 
PMG. While the aminopolycarboxylates (APCs) chelants mostly 
used as chelators include ethylenediamine tetraacetic acid, 
EDTA; nitrilotriacetic acid, NTA; β-alanine diacetic acid, ADA; 
diethylenetriaminepentaacetic acid, DTPA; ethylenediaminedi(o-
hydroxyphenylacetic acid, EDDHA;  N- (hydroxylethyl) – EDTA, 

HEDTA [40]. APCs and phosphonates are among the most 
widely used chelating agents in the world, accounting for 37.8% 
of consumption in 2009 [8,58]. Figure 1 below presents the 
percentage distribution of the most consumed chelating agents 
across different sectors [60].

Aminopolycarboxylates (APCs) chelators (like EDTA and 
NTA) and phosphonates have strong chelation effects for 
metals [20,61]. Unfortunately, most of these compounds are 
not readily biodegradable [20,59,62]. The infiltration of these 
chelants into the environment could cause dissolution of heavy 
metals from the sediments and soils, thereby mobilizing them 
[24,40,49,63] thus leading to increased levels of metals [22], 
except phosphonates that do not mobilise toxic metals [40,59]. 
These strong chelants persist in the environment due to their 
high solubility in water and low biodegradability (except NTA) 
[22]. It has been stated that 800 µg/L of EDTA has been found 
in some U.S. industrial and municipal wastewater treatment 
plants and up to 12 mg/L in European bodies of water [20]. 
EDTA is now among the EU priority list of substances for risk 
assessment [16]. According to Sillanpaa [64], ethylenediamine 
tetraacetic acid (EDTA) contains 10% nitrogen which could harm 
aquatic organisms. Furthermore, the majority of the traditional 
chelating agents (APCs and phosphonates) are petroleum 
derived [65,66]. Therefore, the consumption of traditional APCs 
chelators is declining (–6% annually), because of the persisting 
concerns over their toxicity and negative environmental impact 
[58]. Another concern is that most of these common chelants are 
produced from toxic substances like cyanide [20,67].

 In addition, the EU is regulating the use of phosphates 
in consumer laundry detergents and consumer dishwasher 
detergents in order to reduce the eutrophication risks and costs 
of phosphate removal by wastewater treatment plants [68-71]. 
Their persistence in the environment is because of their low 
biodegradability and high water solubility [67,72]. In addition, 
studies have shown that there is a decline in the high quality 
phosphorus rock reserves used to produce phosphate chelants 
which could lead to higher costs associated with obtaining 
phosphates and phosphonate products. The continuous 
dependence on phosphates and phosphonate chelators will 
further accelerate the decline of finite high quality phosphate 
rocks [73]. Furthermore, phosphates are essential components 
in fertilisers (used for food production) and therefore the 
utilisation of phosphates as chelators is in direct competition 
with the food industry. Therefore, it is essential to look for 
Greener alternative chelating agents in order to reduce the 
reliance on these traditional chelants. Hence, this paper gleans 
for the Greener alternative chelators and their applications, 
especially in metals recovery.   

Some Greener Alternative Chelators
Aminopolycarboxylic acids chelators are the most widely 

consumed chelating agents; however, the percentage of the 
Greener alternative chelators in this category continues to grow 
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[24]. In 2013, these Greener alternative chelants represented 
approximately 15% of the total aminopolycarboxylic acids 
demand. This is expected to rise to around 21% by 2018, 
replacing in particular the EDTA (ethylenediaminetetraacetic 
acid), NTA (nitrilotriacetic acid) and aminophosphonic acids 
used in cleaning applications [20,24,58]. This is because of issues 
like non-biodegradability, toxicity, and mobilization of toxic 
metals by these traditional chelants [24] as earlier mentioned. 
In addition, more than 90% of organic chemicals are derived 
from fossil fuel refineries [74,75] which is not sustainable. The 
continuous depletion of petroleum resources coupled with a 
shift to Greener products by consumers means that it is vital 
to look for alternative Greener chelating agents.  Therefore, in 
order to replace traditional chelants, the alternative chelating 
agents must have a strong ability to form complexes [16,76], as 
well as possess low nitrogen content so as to reduce the loading 
of nitrogen [16]. In addition, they should be readily or at least 
inherently biodegradable [16,76]. These alternative chelants 
are well favored by environmental protection policies [62,77]. 
Examples of some Greener alternative chelating agents include 
ethylenediamine disuccinic acid ([S, S]-EDDS), polyaspartic acid 
(PASA), methylglycinediacetic acid (MGDA) [24,25], glutamic 
diacetic acid (L-GLDA), citrate, gluconic acid, amino acids, plant 
extracts etc. Asemave [78] and Asemave et al. [79] reported 
the use of lipophilic β-diketone, 14,16-hentriacontanedione 
as Greener alternative chelator for metals recovery. These 
have been proposed to replace the classical EDTA and 
diethylenetriaminepentaacetic acid (DTPA) chelators in 
various applications [16,20,80,81]. According to Hyvönen 
[16], alternative chelants have a lower chelating ability when 
compared to the traditional chelators, notwithstanding, this will 
make them less toxic.

Glutamic Acid Diacetic Acid (L-GLDA)
L-glutamic acid diacetic acid is 86% bioderived from food-

approved natural amino acid salt (monosodium L-glutamate 
or MSG) [66,82]. It’s in turn obtained by fermenting sugar, 
molasses, corn or rice (renewable feedstock) [66], and is 
marketed as Dissolvine GL-38 [24]. According to Dixon [24], 
L-GLDA is produced by a waste-free process and from renewable 
feedstock, which is in accordance with the 4th principle of green 
chemistry [24]. Ammonia is generated as a by-product which is 
collected and re-used in industries. It is a strong chelating agent 
that is safe, readily biodegradable [61,83] and is considered to be 
an adequate alternative to phosphates, NTA and EDTA, especially 
in cleaning applications [20,61,84]. It is readily soluble in water 
at different pH values, which increases its performance rate [20]. 
L-GLDA is stable over a different temperature than other APCs. 
L-GLDA, citrate and carbonate are incorporated in detergent 
formulations [85]. Aqueous solutions containing L-GLDA can 
be use as oil field chemicals to dissolve calcium carbonate 
scale and other subterranean carbonate formations to increase 
permeability and enhance the withdrawal of oil or gas [86]. 

Polyaspartic Acid
There are different ways to obtain PASA [87], but the typical 

method for obtaining it is by heating aspartic acid to 453 K 
resulting in poly (succinimide) with elimination of water. The 
sodium hydroxide in the system then reacts with the polymer to 
partially cleave off the amide bonds, in which the (α and β) bonds 
are hydrolyzed resulting in a sodium poly (aspartate) copolymer 
with 30% α-linkages and 70% β-linkages (see Equation 1) [87]. 
Polyaspartic acid production (PASA) is cost-effective; hence it 
is available on a large scale. L-aspartic acid derived from plant 
sugars [88] could be used for the sustainable production of 
PASA. Poly aspartate is used as a biodegradable anti-scaling 
agent, corrosion inhibitor and as a metal chelator [87]. Lingua et 
al. [89] described PASA as a green chelant used in agriculture to 
supply minerals to crop so as to improve the crop yield.  

Equation 1: Synthesis of poly aspartate

Ethylenediamine Dissunic Acid ([S, S]-EDDS)
Ethylenediamine disuccinic acid, [S, S]-EDDS is a naturally 

occurring compound and was first isolated from culture filtrate 
of the actinomycete, Amycolatopsis orientalis. The biosynthesis 
of [S, S]-EDDS is from L-aspartate and serine [83,90] or 
from oxaloacetate and 2,3-diaminopropionic acid [35]. [S, 
S]-EDDS is also synthesized by the nucleophilic addition of 
ethylenediamine with sodium maleate affording stereoisomers 
of ethylenediamine-N,N’-disuccinic acid [90,91]. Alternatively, 
[S, S]-EDDS is produced from the reaction of maleic anhydride 
and ethylenediamine to yield a mixture of the 3- isomer of EDDS. 
The reaction of aspartic acid with 1,2-dibromoethane results 
in the formation of two isomers ([R, R]-EDDS and [S, S]-EDDS, 
depending on the isomer of aspartic acid used. Since aspartic 
acid can be derived from plant sugars it could also enhance the 
sustainable production of [S, S]-EDDS. It is also produced by 
fermentation of A. orientalis [35]. [S, S]-EDDS is the structural 
isomer of EDTA, however it is readily biodegradable than EDTA 
[61]. Equation 2 describes the synthesis of this compound.

 

Equation 2: Synthesis of [S, S]-EDDS

According to Dixon [24], [S, S]-EDDS production is in 
conformity with the 3rd principle of green chemistry; i.e. 
designing less hazardous chemical synthesis. It is one of the most 
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promising biodegradable chelating agents [39,49] and has a low 
nitrogen content [16] making it less toxic [92]. Furthermore, 
[S, S]-EDDS has zero NTA, formaldehyde or cyanide (toxic 
chemicals) unlike common traditional APCs chelants [83]. [S, S]-
EDDS is effective in chelating several metals from soil [93-95]. 
Furthermore, it is capable of binding transition metal ions in 
place of Mg(II) and Ca(II) [24,83]. According to work by Yang et 
al. [96] [S, S]-EDDS at pH 5.5 is more suitable for Cu(II), Zn(II) 
and Pb(II) extraction. Ullmann et al. [97] modified [S, S]-EDDS 
by attaching a lipophilic hydrocarbon chain to its nitrogen atoms 
in order to make a hydrophobic chelating agent. Such lipophilic 
chelants are especially good as metals extractants. 

In addition to these chelating agents above, in 1998, 
another greener alternative chelator, sodium iminodisuccinate 
was introduced [20]. Its production is based on the reaction 
of maleic anhydride with ammonia and sodium hydroxide 
[20,98] (see Equation 3). It is readily biodegradable [43,99] 
and environmentally benign chelator, it is effective in chelating 
Ca(II), Fe(III), Cu(II). And is used in; cleaning, water softening, 
photography, agriculture. Thus eliminating the problem of 
environmental persistence common conventional chelating 
agents [20]. Moreso, we have methylglycine diacetic acid (MGDA) 
as greener chelant. In fact, methylglycinediacetic acid (MGDA), 
L-GLDA and ethylenediamine disuccinic acid [S, S]-EDDS can be 
used in scale inhibition [100].   Both [S, S]-EDDS and MGDA have 
demonstrated to be efficient chelating agents with a mobilizing 
capacity that is comparable with EDTA [43]. MGDA is also 
considered as a possible replacement for EDTA and DTPA [40]. It 
is one compound which has been considered as a good substitute 
for EDTA and DPTA like [S, S]-EDDS [40]. Another biodegradable 
chelating agent, tetrasodium 3-Hydroxy-2,2’-Iminodisuccinate 
(HIDS) has also been reported to have high chelating capability 
[101], which is effective in removing heavy metal ions such 
as Fe(III), Cu(II), Ca(II)  and Mg(II) over wide range of pH. It’s 
thermally stable, solubility in concentrated alkaline solutions, 
and is and environmental harmonious chelating agent [101]. 
HIDs is being found applicable in cleaning processes, textile 
processing,  bleach stabilization, photography, paper and pulp 
processing, scale removal and prevention, metal treatment 
working, water treatment, Agriculture [101,102].

 

Equation 3: Preparation of sodium iminodisuccinate

Citrates
These are salts of citric acid (2-hydroxy-1, 2, 3-propane 

tricarboxylic acid). Citric acid is known to be produced by 
fermentation (using fungi and yeasts) [103], synthesis and 
extraction from citrus fruits [103,104]. Vegetable wastes of 

potato, brinjal, cabbage wastes also have been found to as 
potential sources of citric acid [103]. Citrate fruits are used in 
the treatment of renal calculi [105]. Citric acid is an excellent 
chelating agent which is used to remove lime scale from boilers 
and evaporators [87]. They are used in some cases in place of 
classical chelating agents. For instance, a 24 h washing of the 
contaminated soil with 0.5 M citric acid reduces the levels of 
Cd(II), Cu(II), Zn(II) and Pb(II) from 0.01, 0.04, and 0.42, 41.52 
mg g-1 to 0, 0.02, 0.18, and 5.21 mg g-1 respectively [106]. In 
another development, the ability of citric acid as chelating agents 
to the removal of lead from contaminated soil was examined 
both in the soil washing [107]. In the soil washing, the removal 
efficiency of lead with citric acid was less as [S, S]-EDDS in the pH 
range from 7-10 [107].  Although citrate is less efficient in terms 
of coordinating metal ions as compare to some conventional 
chelants, its activity towards removal of Pb(II) in acid soil is 
better for its low cost and less harm to crops [42]. It is also used 
for removing Ca(II) ions [87]. Citric acid is green chelator for 
removal of heavy metals from contaminated sludge with higher 
extraction efficiency at mildly acidic pH of about 2.30 [107-
109]. Citric acid was found to highly efficient for the recovery 
of Cr(III), Zn(II) and Mn(II) from a printed circuit boards (PCBs) 
[110]. Again mobilization of Pb(II), Zn(II) and Cu(II) from 
harbor sediments using citric acid as chelating agents has been 
previously reported [95]. Extraction efficiencies of citric acid for 
Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) is significant to lower the 
heavy metal content in sludge below the legal standards [111].

Gluconates
Gluconic acid (C6H12O7) is found naturally in fruit, honey, 

kombucha tea, and wine [87]. Gluconic acid is a weak organic 
acid obtained from glucose by a simple oxidation reaction. The 
oxidation is done by the enzyme glucose oxidase (fungi) and 
glucose dehydrogenase (bacteria such as Gluconobacter) [112]. 
But the microbial production of gluconic acid is the preferred 
method where the most studied and widely applied fermentation 
process involves the fungus Aspergillus niger [112]. Gluconic 
acid has two bonding sites: the ionic acid oxygen (-COO-) and 
the oxygen on the hydroxyl group (-OH) which can bond with 
the metal ion [113]. Gluconic acid and its derivatives (such as 
the sodium gluconates) have wide applications in food and 
pharmaceutical industries because of their chelating ability 
[112,113]. Aqueous solutions of the natural chelating agents 
D-gluconic acid and D-glucaric acid (D[+]-saccharic acid) were 
used to remove heavy metal ions (Cd(II), Cr(III), Cu(II), Ni(II), 
Pb(II), Zn(II)) from a soil polluted by long-term application of 
sewage sludge [114]. They found that, between the pH 12.0 and 
13.0, Pb(II) and Cu(II) were selectively extracted [114]. 

Gallic Acid
Bioconversion studies with Aspergillus niger and Rhizopus 

oryzae showed that raw substrates like myrobalan fruits can 
be used as potential substrates instead of extracted tannins 
for gallic acid production [115].  It was found that Aspergillus 
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niger is better gallic acid producing strain [115]. Gallic and 
citric acids were reported to induce removal of Cd(II), Zn(II), 
Cu(II) and Ni(II) from soil without increasing the leaching 
risk [63].  Net removal of these metals by these acids can be 
as much as other classical chelators. A major reason for this 
is the lower phytotoxicity of gallic and citric acids [63]. Other 
bioderived molecules like cyclodextrins (CDs) have also been 
identified as molecular chelating agents [116]. Cyclodextrins 
possess a cage-like supramolecular structure like cryptands, 
calixarenes, cyclophaneS, Spherands and crown ethers [116]. It 
can either be in alpha, beta, or gamma form cyclodextrins [80]. 
Therefore CDs complexes are widely used in many industrial 
products, technologies and analytical methods [116]. Other 
applications includes; drug carrier, food and flavors, cosmetics, 
packing, textileS, Separation processes, environment protection, 
fermentation and catalysis because of negligible cytotoxic effects 
of CDs [116]. Also, phytochelatins are oligomers of glutathione, 
produced by the enzyme phytochelatin synthase. They are found 
in plants, fungi, nematodes and all groups of algae including 
cyanobacteria [87]. Phytochelatin are used for heavy metal 
detoxification [87]. Another natural chelator, phytic acid is an 
organic acid found in rice bran [117]. It is used as an acidulant 
for pH adjustment. Phytic acid binds to metals strongly because 
of strong chelating effect [117]. Moreover, phytic acid shows 
antioxidant action and prevention of color degradation [117]. 
The most outstanding feature of phytic acid is its strong metal 
chelate function, allowing metal ions such as iron (Fe) which 
often adversely affect the production or storage of food in various 
forms to be removed or deactivated [117]. Moreso, pectin (found 
in foods like, apples, bananas, grapes, okra, beets, carrots and all 
citrus fruits) is useful in removing of heavy metals from the body 
[118].

Chitosan is a useful polymeric material produced from 
the shells of crustaceans [119]; it’s a partially deacetylated 
polymer of acetylglucosamine [119]. Chitosan is a common 
biodegradable chelating compound [50]. In most cases, chitosan 
and its derivatives usages is based on their ability to chelate 
strongly heavy and toxic metal ions [120].  Chelation of copper 
and nickel by the addition of the biodegradable chelating 
agent, chitosan, EDTA and citrate was investigated [50]. The 
experiments showed that the extraction ability for copper and 
nickel from the contaminated soil decreased as follows: chitosan 
> EDTA > citrate at pH 3.00 – 3.50. Pimenta et al. [121] also 
found that, 0.2% chitosan, 15% EDTA and 10% citric acid gave 
comparable effects in decreasing dentin microhardness. Amino 
acids and their derivatives have been found use as chelating 
agents. Amino acid chelants are used to deliver minor elements 
to plant unlike synthetic chelates [122]. In addition, amino acids 
complexes of some metals are useful as; anti-inflammatory 
agents, antibacterial agents (as applied against Escherichia coli 
and streptococcus pyogenes) and anti-tumor agents (against 
melanoma) [123]. Furthermore, Fischer [124] investigated the 
ability of β-thiol group containing amino acids L-cysteine and 

L-penicillamine to remove heavy metals (Cd(II), Cr(III), Cu(II), 
Hg(II), Ni(II), Pb(II), Zn(II)) from some soil components (peat, 
bentonite, illite) at neutral pH. The extractability of metals from 
peat in the presence of L-penicillamine was slightly higher than 
L-cysteine in these metals. The recovery of metals from bentonite 
was higher generally [124]. Riri et al. [125] investigated the use 
of simple organic acid (oxalic, glycolic and malic acid) to chelate 
gadolinium (III).  Lignosulfonates, proteins, humic or fulvic acids 
and polyflavonoids are bioderived chemicals that can be used for 
complexing metals and subsequent application in agricultural 
foliar [126-128].  

Additionally, some plant extracts can also be used as chelators 
[129,130]. The chelating efficiency of methanolic extracts of 
Triticum aestivum (wheatgrass) towards iron was investigated 
to determine the iron chelating activity in iron dextran induced 
acute iron overload animals. The chelating power or efficacy of 
the compound was found to be 34.5% to that of desferoxamine 
(commercial chelant) [131]. Ebrahimzadeh et al. [132] found 
that the phenolic and flavonoid extract of Mellilotus arvensis has 
ability to chelate Fe(II) [132].  The chelating ability of aqueous 
extract of Tetracarpidium conophorum was tested in vitro 
[133]. The dose (97.38%) showed the highest chelating ability. 
Therefore, the aqueous extract of Tetracarpidium conophorum 
could be used in the treatment of iron-overload disorders due to 
its high chelating ability in vitro at low doses [133]. The tannin 
fractions isolated from hazelnuts, walnuts and almonds were 
characterized for chelation of Zn(II), Fe(II), Cu(II) [134]. Copper 
ions were most chelated by the tannin fractions of hazelnuts, 
walnuts and almonds. Fe(II) complexation ability of the tannin 
fractions of walnuts and hazelnuts were lower as compared to 
the almond tannin fraction [134]. The capacity to chelate Zn(II) 
was quite varied for the different nut tannin. An in vitro iron 
chelating properties of 60% ethanolic extracts of some plant 
parts (Terminalia chebula, Caesalpinia crista, Cajanus cajan, 
Terminalia belerica, Emblica officinalis, and Tinospora cordifolia) 
were investigated. The iron chelating property of the plant 
extracts as reported were; T. chebula > T. belerica > E. officinalis > 
C. cajan > T. cordifolia > C. crista [135]. 

 Likewise Soya beans extract were found as chelants towards 
Cu(II) [136]. The binding properties of Pb(II), Cu(II), Ni(II), 
Cd(II), Zn(II), Cr(III) and Cr(VI) in native and NaOH-modified 
biomass of Solanum elaeagnifolium were investigated [137]. The 
result at pH 5.0 revealed that; 20.6 mg Pb(II)/ g, 13.1 mg Cu(II)/ 
g, 6.5 mg Ni(II)/ g, 18.9 mg Cd(II)/ g, 7.0 mg Zn(II)/ g, 2.8 mg 
Cr(III)/ g and 2.2 mg Cr(VI)/ g were removed respectively. Better 
still the NaOH modified material gave higher binding properties 
in each case [137]. Tsujimoto et al. [138] had observed that 
anacardic acids from cashew nut can chelate Fe(III). Plant 
extracts have been used for removal of heavy metals especially 
Fe [129,131,132,135,136]. They can be used in treatment of 
iron-overload [133] and recovery of other heavy metals from 
the environment [134,139]. Column experiments of 14 d and 
7 d with partially hydrolyzed wool as chelating agent on a 
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silty-loamy sand agricultural soil was studied. The 14 d wool 
hydrolysate mobilized 68% of Cu in soil, whereas in the case of 
Cd it mobilized 5.5%. The plant (Nicotiana tabacum) uptake of 
Cd(II) and Cu(II), assisted by the application of 6.6 g kg-1 wool 
hydrolysate was increased by 30% in comparison to the control 
plants. Phytoextraction has revealed great potential with no 
leaching detected unlike use of conventional chelating agents 
[140].

Recovery of Metals with Greener Chelators
Aqueous solution of the chelant may be directly used to 

leach metals from spent solid waste into aqueous state. Then 
recovery process of metals from aqueous system with chelating 

agents mostly involves liquid – liquid extraction of metal ions 
with that of chelating agents. Solvent extraction of metals with 
chelating agents has been considered to be an effective method 
for purifying metals [141].  Subsequently the resulted complex 
(chelate) is stripped with strong acid (HCl or HNO3) resulting to 
the release of the captured metal into another aqueous phase. 
This is then concentrated to obtain the metal into pure state. 
From the literature, it has been shown that chelating agents 
(such APCs) alone or supported on other solids have been used 
for the recovery of metals [142-145]. Figure 2 is the flow sheet 
showing the major stages for recovery of metals using chelating 
agents.

Figure 2: Flow Sheet of recovery of metals using chelating agent.

The ability of chelant to bind metal ion is determined by the 
stability constants [24]. Wuana et al. [146] also reported that 
extraction of metals with chelating agents depend on stability 
constants [146]. The larger the stability constant, the stronger 
the chelation effect and the free metal ion in solution become 
lesser [147]. Hence, the commonly consumed chelants (APCs) 
usually have high stability constants with different metal ions 
[24]. Table 1 gives important information because L-GLDA and 
[S, S]-EDDS have relatively higher stability constants for most 

metal ions than most other Greener chelating agents [147,148]. 
As a matter of fact, they have been considered as replacement 
for EDTA and NTA in some applications [25]. Although other 
factors such as temperature, pH and presence of other ions can 
affect the ability to remove metals by chelants [24]. Whereas, 
Table 2 gives some of these Greener chelants; their sources and 
metal chelating functions [149-154]. Again, Table 3 contain some 
plant extracts which have been used for removal of heavy metals 
especially Fe.

Table 1: Stability constants of some Greener chelating agents [60,147,148].

M(n) PASA [S, S]-EDDS L-GLDA Citric Acid Gluconic Acid Tartaric Acid

Ca(II) 2.7 4.6 5.2 3.5 1.21 1.8

Cd(II) 1.7 16.4 9.1 - - -

Cr(III) 7.5 - - - - -

Cu(II) 4.8 18.4 13.1 6.1 18.3 3.2

Mn(II) 2.1 - 7.6 3.2 - -
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Ni(II) - 16.7 10.9 4.8 - 3.8

Zn(II) 2.2 13.4 10.0 4.5 1.7 2.7

Pb(II) - 12.7 10.5 - - -

Table 2: Some Greener chelating agents used for recovery of metals.

Name Sources Common metals Recovery (%) pH Ref.

Citric acid
Fermentation of carbohydrate [149], 
synthesis and extraction from citrus 

fruits [103,104]

Cr(III) (100), Cu(II) (88), Ni(II) (98), 
Zn(II) (100) and Pb(II) (95) 2.3 [108,111,150]

Gluconic acid Oxidation of glucose [112,114]
Ni(II) (43), Cr(III) (60), Cd(II) (63), 
Zn(II) (70), Pb(II) (80) and Cu(II) 

(84)
12.5 [114]

Ethylenediamine disuccinic 
acid [S, S] -EDDS L-aspartic acid [90] Cu(II) (80), Zn(II) (64), Pb(II) (91) 

and

Cd(II) (52) 4 [151,152]

Polyaspartic acid- PASA L-aspartic acid [60,87] Ca(II), Cr(III) and Cu(II) - [60]

Glutamic diacetic acid 
(L-GLDA)

Fermentation of sugar, molasses, corn 
and  rice [20,60,84]

Cd(II) (84), Cu(II) (94), Pb(II) (54), 
Zn(II) (62) and Ni(II) (39) 4 [152]

Tartaric acid Grapes,  fermentation of wine-lees Cd(II) (60), Pb(II) (50), Cu(II) (50) 
and Zn(II) (30) 3.5 - 4.0 [146,153]

14,16-hentriacontanedione 
(C31H60O2) Wheat straw wax [154] Cu(II), Pb(II), Ni(II) and  Co(II) 4 - 7 [78,79]

Table 3: Some plant extracts as chelating agents for recovery of metals.

Source of Extract Form Used Common Metals Recovery (%) Ref.

Wool From hydrolysis Cu(II) (68) and Cd(II) (5.5) [140]

Watermelon (Citrullus lanatus ) 1%  aqueous extract (mesocarp) Fe(II) (55) [129]

Wheatgrass species (Triticum 
aestivum) Methanol extract Fe(II)  (35) [131]

Feijoa sellowiana Aqueous extracts (fruits) - 
3.2mg/L Fe(II)  (18) [132]

Sambucus ebulus Aqueous extracts (fruits) -  
3.2mg/L Fe(II)  (21) [132]

African walnut (Tetracarpidium 
conophorum) Aqueous extract 2% Fe(II)  (97) [133]

Almond Nuts Tannins  Fraction Zn(II) (84) and Fe(II) (90) [134]

Naturally fermented raw liquid 
pineapple - Cd(II) (34), Cr(III) (6), Cu(II) (100), Pb(II) (48), 

Ni(II) (38) and Zn(II) (100) [139]

Conclusion
Classical chelating agents (especially aminopolycarboxylates, 

APCs and phosphonates) are till date the commonly used in 
industrial and home processes. This is due to their ability to 
strongly bind metals, and perhaps their being available in the 
market over a long time now. Abundant evidences proved that 
they are not environmentally benign. This has spurred the quest 
of industrialists and academia, as prompted by environmental 
policies, towards low toxicological profile and environmentally 
friendly chelating agents. The desire has resulted into annual rise 
in formulations and proposals of Greener alternative chelators 
such as glutamic diacetic acid (L-GLDA), ethylenediamine 
disuccinic acid [S, S]- EDDS, polyaspartic acid, citrate, gluconic acid, 
amino acids, lipophilic β-diketone (14,16)-hentriacontanedione, 

plant extracts etc. to be used in place of the classical chelants. 
For reasons of environmental compatibility, low toxic profile, 
biodegradability and sustainability, these Greener chelators 
are better employed for industrial and home applications. 
Importantly, they can be applied to recovering metals from 
wastes to ensure sustainability of metals and their uses.
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