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Colonization: Northernmost and  

Southernmost Invasion on Saltmarsh  
Ecosystems in the SW Atlantic

Introduction

Intertidal marshes, characterized by strong plant zonation 
and low species diversity but exceptionally high primary and 
secondary production [1-4], provide valuable ecosystem services 
such as raw materials, food, coastal protection, erosion control, 
water purification, support for fisheries, carbon sequestration, 
and opportunities for tourism, recreation, education, and research 
[5-11]. Unfortunately, wetland loss worldwide, particularly in 
the form of marshes [12-14], has been accelerated in the past 
decade due to factors such as global climate change, sea-level rise, 
agricultural and industrial development, and sediment supply 
loss [15]. Although physical factors like wind action, wave energy, 
and tides contribute significantly to marsh erosion rates [16,17], 
biological factors interacting with these physical forces also play 
an important role in geomorphological processes. Autogenic 
ecosystem engineers and allogenic ecosystem engineers, along 
with herbivores and their predators, influence primary production 
and the stability of these environments [4,18-21]. Invasive species 
further complicate ecological systems by altering the evolutionary 
pathways of native species, modifying the structure of biological  

 
communities, and disrupting habitat complexity [22-25]. Invasive 
marine invertebrate species pose significant ecological and 
economic threats to marine ecosystems globally. These species, 
often unintentionally introduced through ballast water discharge, 
hull fouling, or aquaculture activities, establish populations 
in non-native habitats, where they lack natural predators or 
competitors [26]. Their rapid growth, high reproductive rates, 
and adaptability enable them to outcompete native species for 
resources, disrupt marine ecosystems, and cause declines in 
native biodiversity, impacting fisheries, aquaculture, and coastal 
communities. Managing and preventing these invasions require 
effective monitoring, early detection, rapid response strategies, 
and international cooperation to address this global issue [27].

The Pacific oyster, Magallana gigas, intentionally introduced 
for aquaculture purposes, often becomes invasive, resulting in 
significant alterations to coastal ecosystems [28]. In Argentina, 
Magallana gigas was illegally introduced in Anegada Bay (39º 
50´ S to 40º 40´S and 62º 10´w) [29,30] around 1982 as part of 
an oyster culture project [31]. Since its introduction, the first 
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oysters were discovered outside the bay in Los Pocitos in 1987 
(40°26’37.08”S. 62°25’20.47”W) [32], and they have since spread 
both north and south, as reported by Dos Santos et al. [33] who 
found a few oysters on port docks at the Bahia Blanca estuary 
(38°52′00″S 62°07′00″W), and by Narvarte & Morsan [34] in the 
rocky intertidal of El Condor (41° 3’35.84”S 62°50’14.68”w).

While no presence of oysters has been registered in 
saltmarshes, [35] reported a small population of C. gigas in San 
Borombon Bay (36°00′S 57°12′W) attached to various structures 
such as the stems of Spartina alterniflora, plastic bags, wooden 
sticks, and possibly other mollusk shells, which indicates a 
population close to an experimental C. gigas farm in Las Toninas 

(36°29′00″S 56°42′00″W approximately 20 km away from the 
location). However, [36] later determined that the oysters were 
another species Crasostrea talonata [37], which negatively 
impacted S. alterniflora. While the presence of the invasive species 
Magallana gigas, the Pacific oyster, may have a positive effect on 
some fish species, as described by [38], since it can be considered 
an autogenic ecosystem engineer [39], its effect on spartina 
species remains unknown. Twelve years after the population was 
established in Bahía Blanca, M. gigas is abundant and has colonized 
saltmarshes, with apparent significant impacts on ecosystem 
structure and functionality [38]. However, eighteen years after 
the population was found in El Condor, it has almost disappeared 
from the rocks, but it is starting to colonize the saltmarshes in the 
Rio Negro estuary, a few kilometers away (Molina, pers. obs., this 
work). In the South West (SW) Atlantic, between southern Brazil 
(32°S) and northern Patagonia (42°S), extensive saltmarshes 
dominated by cord grasses such as Spartina densiflora, Spartina 
alterniflora, and the chickenclaws Sarcocornia perennis are found 
[40]. These SW saltmarshes, where S. alterniflora is the only 
or dominant species, are daily flooded by tides (e.g., [38]) and 
support a high abundance of fishes [38,41].

The aim of this paper is to report the northernmost and 
southernmost colonization of saltmarshes by Magallana gigas.

Materials and Methods

Study Area

The study was conducted in two saltmarshes located in the 
Bahía Blanca estuary (Villa del Mar, 38° 51’ S, 62° 6’ W) and the 
Río Negro estuary (40º 58´24” S 62º 48´65” W) in Argentina 
(Figure 1). These are large macrotidal embayments with tidal 
amplitudes of up to 4 meters, covering an area of 2300 km2 and 
400 km2 respectively, and experiencing semidiurnal tides [42]. In 
both locations, Spartina alterniflora is the dominant marsh plant 
species occupying the lower intertidal zone. The middle zone is 
occupied by Spartina densiflora, while Sarcocornia perennis is 
restricted to a narrow strip on the higher part of the saltmarsh. 
During low tide, both the saltmarsh and a wide area of the tidal 
flat are exposed to air. Sampling was conducted in the summer 
of 2023 in the lower part of the saltmarsh where S. alterniflora 
dominates, including vegetated areas and the edge of vegetated 
areas, as well as in the adjacent tidal channels and tidal flats.

To estimate oyster densities in vegetated areas, channels, 
and bare sediments on the saltmarshes, we utilized a circular 
sampler of 0.28 m2 (N=20 per site, Figure 2). Mean densities were 
calculated and graphed for each site (Figure 3).

Figure 1: Geographical range dispersion of Magallana gigas (blue arrows) showing the location of the southernmost marsh reached (blue 
dot) and the new northernmost salt marsh reached (red dot). The original spread point is shown as a yellow dot.
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Figure 2: Sampling device used to estimate oyster density.

Figure 3: Graphs showing oyster mean densities in Villa del Mar and Salt Marsh of Río Negro estuary (color coding is provided in the graph). 
M, ME, TF, and TCH represent Marsh, Marsh Edge, Tidal Flat, and Channel, respectively. Black whiskers indicate standard deviation.

Results and Discussion

The density patterns vary between the different sites. In the 
Bahia Blanca salt marshes, oyster densities are higher at the edges 
of vegetated areas, while they are lower in the bare sediment 
areas or tidal flats. On the other hand, in the Rio Negro estuary 
salt marshes, oyster densities are higher in non-vegetated areas, 

specifically in the salt marsh channels, compared to the vegetated 
areas (Figure 3).

In the first location, the substrate consists of a mixture of 
sand and mud, with extensive bare flats covering most of the 
intertidal fringe. Despite the limited freshwater input relative to 
the size of the estuary, there are high densities of Magallana gigas 
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covering the sediment surface, forming reefs. Vegetation is mainly 
restricted to the upper intertidal zone, with plant densities ranging 
from 100 to more than 300 ramets per square meter, following a 
strong seasonal pattern. Interestingly, numerous oysters can be 
found growing between the plants, resulting in a significant bio-
geomorphological impact (Molina pers. Obs.).

In the Rio Negro salt marshes, there are no significant 
differences in sediment characteristics and marsh plant 
structure compared to the previous location. However, there is a 
notable difference in the freshwater input to the system, which 
is considerably higher in this area. As a result, oysters show 
a preference for salt marsh tidal channels as their preferred 
habitat. The mechanism by which oysters arrived at both marshes 
remains unknown, with uncertainty whether it occurred naturally 
through larval dispersion or through intentional human activities. 
The lack of larval dispersal models for Non-Indigenous Species 
(NIS) along the Argentinian coast has led to a significant debate 
regarding the migration of the Pacific oyster. Additionally, the 
absence of systematic coastal observations, such as monitoring 
wind waves, nearshore currents, and other hydrographic features 
in this specific coastal region, presents a challenge in conducting 
an unbiased study based on observed parameters. Consequently, 
there is currently a shortage of peer-reviewed literature on coastal 
hydrodynamics or littoral processes in the study area due to the 
limited availability of data [43].

Conclusion

Invasive species have a significant impact on the distribution, 
abundance, and composition of native species groups. When 
considering the Pacific oyster (M. gigas) as an autogenic 
ecosystem engineer, there is an ongoing debate about its effects 
on biodiversity, with theoretical predictions suggesting both 
decreases and increases [38], and references therein. This 
controversy is particularly important in soft-bottom habitats, 
where M. gigas promotes spatial heterogeneity and complexity 
by creating reef structures through larval settlement and shell 
attachment [44].

The overall impact of M. gigas ecosystem engineering is 
influenced by various factors and interactions. It can facilitate 
primary producers [43,45], displace native species due to reef 
structures [46,47], promote further invasions [48,49], and 
increase sedimentation rates, potentially obstructing coastal 
areas [46,50]. Additionally, M. gigas can provide new habitat for 
cryptogenic fish species [38].

The introduction of Magallana gigas, which competes 
with existing habitat structures such as Spartina, may affect 
the availability of important refuge and foraging resources for 
estuarine fishes, while increasing habitat complexity [51,52]. 
Further studies are necessary to understand the impacts and 
modifications occurring within communities and their habitats. 

This knowledge will enable the prediction of new dynamics 
and the improvement of management strategies, especially 
considering that many species inhabiting these habitats may be 
negatively affected. The loss of stability in saltmarshes, crucial 
for coastal defense, nurseries, and carbon storage, is a potential 
consequence that should be taken into account [53,54].
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