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Introduction 

Anthropogenic contaminants discharged into aquatic 
environments can cause negative impacts to marine biota, 
especially in urbanized, industrialized or harbor sites [1]. As a 
result of the low hydrodynamics and inherent protection against 
waves and strong currents, estuarine areas tend to concentrate 
contaminants. This is the same reason why pollutant levels are 
generally higher in estuaries than in the open sea. Many harmful 
pollutants found in trace levels in water may accumulate to 
elevated concentrations in sediments. Thus, sediments act both 
as reservoirs and sources of contaminants to the water column 
and tend to integrate contaminant concentrations over time [2]. 
Regardless of the source, contaminants such as heavy metals are 
potentially adsorbed to fine-grained and organic rich sediments 
[3,4]. These contaminants tend to deposit in hydrodynamically 
quiet areas like estuaries and bays [5], where the low circulation 
allows stabilization of finer particle fractions and maintenance of 
subtoxic patterns, which in turn allows the retention of organic 
matter.

Potentially toxic metals may occur mainly due to industrial 
and agricultural wastes [6-8]. Some metals are essential for living 
organisms, such as Cu and Zn [9]. However, some are toxic to living 
organisms [10]. Lead, Arsenic, Mercury, and Cadmium, for example, 
are considered some highly toxic metals whose widespread use 
has caused extensive environmental contamination and health 
problems in many parts of the world [11]. Heavy metals are 
regarded as especially dangerous contaminants because of their 
environmental persistence, toxicity, and ability to be incorporated 
into food chains [12]. The strongest toxic properties are 
characteristic of inorganic metals compounds, which are easily 
soluble [13]. Some heavy metals dissolve immediately and tend to 
accumulate in aquatic organisms [14].

After entering the aquatic environment, heavy metals tend 
to be sequestered at the bottom [15]. They tend to be adsorbed 
into inorganic and organic particulates and finally incorporated 
into sediment compartments, generating elevated levels of heavy 
metals in bottom sediments [16]. On the other hand, heavy metals 
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are not necessarily stored in sediments permanently. Some of the 
sediment-bound metals may remobilize and be released back into 
the water through a variation of environmental conditions [17]. 
The distribution processes of the metals entering natural waters 
are controlled by a dynamic set of physicochemical interactions, 
and their solubility is controlled mainly by hydrogen ionic 
potential (pH), type of metal species, organic matter content, the 
oxidation state of mineral components and the redox environment 
of the aquatic system [18,19].

The Brazilian coastline presents a great diversity of 
geomorphological features [20], with many bays and estuaries, 
where different economic activities with great polluting potential 
exist. Port terminals and harbor areas have great importance 
in the economy around the globe. However, their operation has 
been very impactful on marine and coastal ecosystems [21]. 
Despite being a consequence of port operation, aquatic pollution 
represents a problem in port management, especially about 
potentially toxic metals. The aim of this study is to evaluate the 

metal concentrations in water and sediment samples collected in 
São Marco Bay harbor area.

Study Site 

The northern coast of Brazil is characterized as an extremely 
irregular shoreline [22], formed by many estuaries extending 
from São Marcos Bay, in Maranhão State, up to the extreme north 
of Amapá State [23]. São Marcos bay is an active estuary, spread 
approximately 100km in length, with the hydrographic basin 
composed of Grajaú, Mearim, and Pindaré rivers (Figure 1). The 
climate is formed by two main seasons: a rainy and a dry season 
[24] (Figure 2). The hydrodynamic regime is characterized by 
a semidiurnal macrotide with current velocities higher than 
1.1 ms-1 (maximum tidal currents of 2.42 ms-1) [25]. The bay is 
surrounded by a wide mangrove environment [26]. The entrance 
of the bay presents a width of ~55 km, which narrows to 1.5 km at 
the intersection of Pindaré and Mearim rivers. 

Figure 1: Study Site.
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Figure 2: Typical pluviogram of the city of Sao Luiz (Source: Climate-data.org).

The bay contains a central channel with depth measuring 
up to 90 m, which works as a waterway for the second-most 
important port complex of Latin America, which includes São Luís 
harbor, Itaqui harbor, Ponta da Madeira port terminal and Alumar 
port terminal [27]. Ponta da Madeira terminal passed through an 
expansion to increase its export capacity to 235 million tons per 
year of iron mineral, becoming the port with the largest volume of 
cargo in Brazil. In addition to ore export, the region has steel and 
aluminum mills, such facilities representing the major economic 
activity of the region [25]. Finally, São Marcos Bay represents an 
important fishing spot. In the last few decades, chemical pollution 
of that environment due to sewage discharge, the nutrient runoff 
from pesticides, and industrial waste have impacted the region. 
Combined with the unsustainable use of resources, this has had an 
increasing threat to the health of aquatic organisms [28].

Materials and Methods 

Four seasonal field campaigns were carried out, during ebb 
tide, from August/2017 to September/2018, when seven sampling 
stations were established and marked using global positioning 
system coordinates.

Physicochemical parameters (temperature, pH, dissolved 
oxygen levels (DO), salinity and redox potential) were analyzed 
in situ, using a multi parameter probe (Horiba U-51). Surface 
water samples were obtained with a 5L Van Dorn bottle. Water 
was analyzed for Total Organic Carbon (TOC), Phosphate, and 
Metals (Pb, Cu, Cr, Cd, Ni, Zn, and Hg) and As. Water samples were 
filtered through 0.45 μm cellulose acetate membrane filters using 
a vacuum filtration, preserved in plastic bottles (Polypropylene 

bottles) and maintained in cooler boxes until laboratory analysis. 

For heavy metals analysis, the sampling bottles were pre-
conditioned with 5% nitric acid and later rinsed thoroughly with 
distilled de-ionized water. At each sampling site, the polyethylene 
sampling bottles were rinsed at least three times before sampling 
was done. About 0.5 L of the water samples were taken at each 
sampling site. Samples were acidified with 10% HNO3, placed 
in an ice bath and brought to the laboratory. Sediment samples 
were collected at each site using a Van Veen grab to determine the 
sediment grain size, TOC, Phosphate and Metals (Pb, Cu, Cr, Cd, 
Ni, Zn, and Hg) and As. After sampling, sediment samples were 
properly stored in a cooler box.

Water Analysis 

Total Organic Carbon was determined using a dry combustion 
method with a Perkin Elmer 2400 CHN (carbon, hydrogen, and 
nitrogen) analyzer (series II). The instrument was calibrated 
using standard solutions of potassium hydrogen phthalate, 
diluted to different concentrations according to the estimated TOC 
content of the samples. The value obtained for each sample was 
the average of at least three satisfactory injections in terms of the 
coefficient of variation (≤ 2%). Total phosphorus concentrations 
were obtained by persulfate oxidation [29]. The concentrations 
of heavy metals (Pb, Cu, Cr, Zn, and Ni) and as were measured 
by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, 
Thermo Fisher scientific X series 2). Cd and Hg were measured by 
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Thermo 
Fisher scientific X series 2).
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Sediment Analysis 

The sediment grain size was measured by wet sieving and 
pipette analysis as described by Hsieh (1995). The samples were 
transferred to the laboratory and frozen (~-20oC) until analysis. 
Freeze-dried sediment samples were first heated at a relatively 
low temperature (60oC), after 2-3 treatments with 2 N HCl to 
remove inorganic carbon. TOC concentrations were determined 
using a PerkinElmer Series II CHNS/O analyzer, Model 2400. Total 
Phosphate was obtained after the sample ignition at 550 °C for 12 
hours. Ashes were digested by HCl 1.0 M under stirring.

Heavy metal samples were placed into acid-washed plastic 
bags and transported to the laboratory where they were wet-
sieved, and fractions < 0.063 mm analyzed for geochemical 
parameters. The digestion method to extract heavy metals was 
based on the USEPA Method 3051A [30,31]. 0.5-g dry weight 
(dw) were digested with 10 mL of HNO3 in a Microwave Sample 
Preparation System (Model 1000, CEM Corp, Matthews, NC). 
Acidified sediment extracts were filtered through a Whatman 41 
filter paper, diluted to 50 mL with distilled deionized water (ddw), 
and stored in 60 mL polypropylene Nalgene bottles. Digestion for 
Hg determination was based on the USEPA Method 7471 A [30]. 

Briefly, about 1 g dw equivalent of each sample was digested 
with 5 mL H2SO4 and 2.5 mL HNO3. Samples were placed in a 
water bath at a temperature of 95 oC for two minutes. When 
samples achieved room temperature, 25 mL of ddw and 40 mL 
of 5 % w/v KMnO4 were added. Samples were placed back in the 
water bath for one hour. Digested samples were diluted to 100 
mL with ddw and discolored with 10 mL of a sodium chloride-
hydroxylamine sulfate solution. The heavy metals (Pb, Cu, As, Cr, 
Ni, Zn and Ni) concentrations of the solutions were measured 
by Inductively Coupled Plasma-Atomic Emission Spectrometry 
(ICP-AES, Perkin Elmer Optima, 2000DV), and Cd and Hg were 
measured by Inductively Coupled Plasma-Mass Spectrometry 
(ICP-MS, Thermo Fisher Scientific X series 2)

For quality control, reagent blanks, standard reference 
materials (GBW07333), and sample replicates were inserted 
in the analysis. All reagents were ultrapure and glassware/
plastic ware/filters cleaned according to the method of Harrison 
and Laxen (1980). The result showed that there was no sign 
of contamination in the analysis and all the relative standard 
deviations of the replicate samples were < 10 %. The recovery 
rates for the heavy metals in the GBW07333 standard were higher 
than 82%. Mean recoveries were as follows: Pb, 92.0 %; Cu, 95 %; 
Cd, 82 %, As, 78 %, Cr, 89.0 %; Ni, 85 %; Zn, 84 % and Hg, 92 %. 
The detection limits of the method are respectively: As, 1 mg Kg-1; 
Cd, 0.1 mg Kg-1; Pb, 0.4 mg Kg-1; Cu, 0.1 mg Kg-1; Cr, 0.1 mg Kg-1; Hg, 
0.02 mg Kg-1; Ni, 0.4 mg Kg-1 and Zn, 0.4mg Kg-1.

The sediment properties and total metal concentrations from 
different sampling stations were compared using multivariate 

analysis of variance (ANOVA) and Tukey test followed by a 
Pearson significant correlation test. Normality of the data was 
tested with the Shapiro-Wilk test prior to analysis. Finally, the 
assessment of sediment elements enrichment was carried out 
through the calculation of the geo accumulation index (Igeo). Igeo 
was originally used in bottom sediments by Muller [32] enabling 
the contamination assessment by comparing the current levels of 
metal concentrations and the original preindustrial concentrations 
in the soils. This index is computed by the following equation:

log 2[ ]
1.5

CnIgeo
Bn

=

where:

Cn = Measured concentration of the element in the tested 
sediment

Bn = Geochemical background value of the element in fossil 
argillaceous sediment.

The present work considered the values reached by Rudnick 
& Gao [33]. The constant 1.5 is introduced to minimize the effect 
of possible variations in the background values that may be 
attributed to lithologic variations in the sediments. The following 
interpretation for the Igeo is given [32,34]: Igeo< 0 = practically 
unpolluted; 0 <Igeo< 1 = unpolluted to moderated polluted; 1 
<Igeo< 2 = moderately polluted, 2<Igeo< 3 =moderately to strongly 
polluted; 3<Igeo<4 = strongly polluted; 4<Igeo<5 = strongly to 
extremely polluted; and Igeo> 5 = extremely polluted. In this 
study, we used the Igeo index using grain fraction < 0.063mm 
according to González-Macías et al [25].

Results and Discussion 
Water 

The physicochemical conditions of surface and bottom 
water in the São Marco Bay were recorded from August/2017 
to September/2018, showing temperature variation ranging 
from 24.9 to 29.6°C and the highest and the lowest values were 
recorded in February (rainy season). In general, in the present 
study, temperatures at the bottom and surface appeared to be 
similar, suggesting a negligible thermal stratification in the water 
column (Figure 3). The ANOVA test did not confirm the water 
column thermal stratification to be significant (p > 0.05).

On the other hand, temperature can promote direct impacts 
on fauna and flora physiological processes involving oxygen 
consumption/production balance. Also, temperature can 
stimulate planktonic and benthic respiration rates [35]. It is 
assumed that primary production is also enhanced in the summer 
in many temperate estuarine zones [36], while an accumulation 
of phytoplankton biomass can result in bottom-water oxygen 
depletion [37]. Temperatures recorded in the August campaign 
were significantly lower than in the other campaigns (ANOVA: p 
< 0.05). Rodrigues et al. [38] recorded similar thermal patterns 
during two years of monitoring in areas adjacent to the present 
study site.
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Figure 3: Water column physicochemical results.

The anthropogenic acidification of estuarine water can cause 
several negative impacts on primary and secondary producers. 
Additionally, because of the high levels of some ions, like 
bicarbonate and calcium, seawater presents significant buffering 

capacity against pH changes [31]. In the open ocean, seawater 
typically varies between 7.8 to 8.4. In coastal areas such estuaries, 
on the other hand, pHs can reach considerably lower values (7 
into strongly acidic conditions). In the present study, the recorded 
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pH values showed to be predominantly basic, suggesting the 
influence of the open sea carbonate system [39], varying between 
7.09 in September to 8.94 in May (Figure 3). 

According to the ANOVA test, no significant statistical 
variation was found between sampling depths (p>0.05), 
suggesting the predominance of seawater influence. González-
Gorbeña et al. [25] confirmed the significant power of tidal 
currents in the study site, suggesting tides as the most important 
local energy component. This feature may interfere considerably 
with the quality of the water, promoting turbulent mixing and not 
allowing the stratification of the water column. Estuaries tends 
to exhibit significant spatial and temporal variation in dissolved 
oxygen levels across the ecosystem [37]. Within this context, high 
oxygen consumption rates can be due to direct organic discharges 
from the watershed or can be caused by phytoplankton blooms 
(autochthonous organic matter production) fed by inorganic 
nutrient loadings [40]. 

Additionally, it is now discussed that global warming may 
also result in changes in the dissolved oxygen content of coastal 
and estuarine waters [41]. The present study recorded levels of 
dissolved oxygen varying between 6.3 to 8.6 mg L-1, suggesting a 
relative intense oxygenation of the environment, because of the 
influence of the oceanic water into the system (Figure 3). Rodrigues 
et al. [38] reported mean levels of oxygen in the two mangroves in 
the vicinity of the study area, varying around 4 mg L-1, confirming 
the good oxygenation of the area, even in the mangrove areas. 
Cavalcanti et al. [42], on the other hand, recorded dissolved oxygen 
varying between 3.08 mg L-1 to 6.5 mg L-1, highlighting a seasonal 
pattern with significant differences between the rainy and the dry 
seasons, with higher values observed in the dry season and ebb 
tide. 

The relatively high levels of oxygen can be attributed to 
the peculiar characteristics of São Marco Bay, since this bay is 
dominated by a macro tide regime where wind force also develops 
continuous vertical mixing of the water column, allowing 
the translocation of oxygen- saturated water and preventing 
proximate coastal water bodies from eutrophication since 
macrotidal currents decrease the response of primary production 
to enhanced nutrient inputs [43]. Salinity plays a crucial role and 
defines structural and functional dynamics of aquatic biota in 
estuarine environment [44]. As a result of the mixing of oceanic 
and continental waters, estuaries tend to have large salinity 
variations, both vertically and spatially [44]. 

Mainly, because of the estuarine mixture, heavy metals 
in different forms are influenced by various processes whose 
flocculation is one of these reactions [45], transferring heavy 
metals from soluble forms to particulate fraction. Our results 
varied between 17.5 in May and 36.6 in February, suggesting 
the alternation between continental and oceanic water presence 
(Figure 3). Salinity may vary daily with tidal cycles, or episodically 
due to rain events. ANOVA statistical analysis, on the other 

hand, did not show any significant variation between sampling 
stations or depths (p>0.05). Seasonal evaluation, on the other 
hand, showed significant differences for all the physical chemical 
parameters among different campaigns, suggesting an important 
climatological influence in the estuarine water dynamics (p<0.05).

According to Middelburg and Soetaert [46], in the water-
sediment interface, the stratification of biogeochemical processes 
corresponds to a vertical distribution of the electron-acceptor. 
The same authors argue that the processes that govern the fate 
of these substances in the sediment result from the complex 
interactions with the biogeochemical cycles of major redox and 
biogenic elements such as C, N, O, P and Si. So, in the present 
study, water oxidation–reduction potential varied between 124.8 
and 239.2 (Figure 4), confirming an oxidant environment. In the 
sediment, on the other hand, results presented only negative 
values (between -90 and -155) suggesting a hypoxic environment. 
The sediment data can be explained because of the limited oxygen 
percolation horizon in sediments, varying between 1 mm (in fine 
muddy grain size) to a few cm (in coarser sandy sediments) [47]. 
Additionally, the organic matter is degraded by heterotrophic 
bacteria or respired and mineralized [48] stimulating the oxygen 
depletion rates [49], resulting in hypoxic or anoxic conditions and 
negative redox patterns.

The total phosphorus concentrations, varied between 0.07 
and 26.40 mg L-1, presenting values higher than environments 
such as Guanabara Bay [50]. The concentrations of heavy metals 
in the water samples are shown in Figure 5. Hg, Ni, As, Pb, and 
Cd were below the detection limits, suggesting no anthropogenic 
source for these metals in the studied area. Concentration of Cu 
and Cr ranged between n.d. (not detected) – 3.95 mg L-1 and 
0.35 – 1.36mg 268 L-1 respectively (Figure 5 and Table 1). Zn had 
its highest concentration of 3.36 mg L-1 in August and its lowest 
concentration of 0.03 mg L-1 in February. Such results showed a 
significant difference among seasons, suggesting the solubilization 
of water heavy metals during rainy season and highlighting the 
local climatology as an important variable in the geochemical 
dynamics of the estuarine water. Carvalho et al. [51] determined 
the concentrations of Cu, Zn, Pb, and Cd in the mussel Mytella 
falcata from the Bacanga River estuary, located in the same bay. 
These authors suggested that Zn presented slightly higher values 
than the maximum ones established by the Brazilian government, 
reinforcing the idea of the bioavailability of this metal.

Sediment

In the present study, the total organic carbon levels in the 
sediment varied between 0.54 and 0.91 % (Table 2). Other studies 
developed in the Brazilian coast showed very similar levels 
[52,53]. The highest polluted areas in Brazil such as Guanabara 
Bay and Sepetiba Bay, on the other hand, present higher values 
(Table 2). Previous studies on sediment and water contamination 
in the studied area showed significantly higher levels of mercury 
and chrome, which confirms that São Marcos Bay is a site with 
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high exposure risks for some contaminants [28]. The present 
study did not show the same pattern, where the concentration 
of Hg was below the detection limits of the method, probably 

because the samples were not collected in the same place, where 
sedimentological characteristics may differ.

Figure 4: Eh Results.

Table 1. Water analysis results.

  Total Phosphorus (mg L-1) Copper (mg L-1) Chrome (mg L-1) Zinc (mg L-1)

 Date Aug-
2017

Feb-
2018

May-
2018

Sep-
2018

Aug-
2017

Feb-
2018

May-
2018

Sep-
2018

Aug-
2017

Feb-
2018

May-
2018

Sep-
2018

Aug-
2017

Feb-
2018

May-
2018

Sep-
2018

SM-01

Surface 
Water 20.3 22.5 21.5 1.5 3.03 0.83 0.88 0.91 1.13 0.57 0.5 0.62 2.71 1.44 1.39 1.5

Bottom 
Water 26.4 15.85 14.9 2.01 3.95 0.95 0.75 0.99 1.36 0.7 0.66 0.73 3.36 1.9 1.85 2.01

SM-02

Surface 
Water 18.7 25 19.15 0.07 2.84 0.4 2.12 0.46 0.95 0.81 0.77 0.86 2.58 0.03 0.58 0.07

Bottom 
Water 25.2 17.25 14.1 0.13 3.73 2.94 0.34 2.99 1.19 0.96 0.92 1 3.24 0.08 0.58 0.13

SM-03

Surface 
Water 18.1 25.3 20.3 2.05 2.78 1.77 1.73 1.65 0.9 0.85 0.82 0.75 2.52 2.2 1.8 2.05

Bottom 
Water 24.8 19.2 14.9 2.9 3.67 2.57 2.29 2.44 1.12 1 0.93 0.9 3.17 3 2.76 2.9
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SM-04

Surface 
Water 19.3 21.3 20.05 1.52 2.91 1.62 1.54 1.69 1.02 0.6 0.54 0.65 2.62 1.44 1.35 1.52

Bottom 
Water 25.6 13 10.5 1.8 3.77 1.63 0.58 1.74 1.24 0.73 0.69 0.77 3.28 1.7 1.61 1.8

SM-05

Surface 
Water 19.75 20.45 18.9 1.6 2.95 1.63 1.58 1.7 1.07 0.7 0.67 0.8 2.67 1.55 1.5 1.6

Bottom 
Water 25.9 24 15.3 1.99 3.82 2.28 2.09 2.35 1.29 0.86 0.83 0.94 3.31 1.9 1.83 1.99

SM-06

Surface 
Water 17.45 18.3 18.2 1.54 2.72 1.22 1.15 1.4 0.81 0.54 0.49 0.62 2.44 1.46 1.36 1.54

Bottom 
Water 24.1 14.55 12.7 1.8 3.62 2.33 2.02 2.45 1.06 0.7 0.66 0.76 3.11 1.71 1.65 1.8

SM-07
Surface 19.8 15.95 14.9 1.21 2.97 1.08 0.96 1.2 1.08 0.39 0.35 0.6 2.65 0.99 0.92 1.21

Bottom 25.9 12.3 9.3 1.36 3.83 0.2 0 0.4 1.31 0.47 0.44 0.69 3.33 1.1 0.97 1.36

Figure 5: Seasonal variation of Heavy Metals levels in water.
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Table 2:  Total Organic Carbon sediment content along Brazilian coast.

Author Study Site Total Organic Carbon Content (%)

Present Study Harbor area São Marco Bay 0.54–0.91

Ribeiro et al., 2008 Guanabara Bay 0.82–10.60

Martins et al., 2018 NE Sector of Guanabara Bay 1.0–6.1

Vilela et al., 2003 Guanabara Bay 0.05–6.13

Rodrigues et al., 2017 Sepetiba Bay 0.06–4.79

Costa et al., 2011 Todos os Santos Bay 0.95–2.7

Venturini et al., 2004 Todos os Santos Bay 0.12–3.5

Perina et al., 2018 São Vicente Estuarine System 0.8–8.6

Burone et al., 2003 Ubatuba Bay 0.10–2.86

Alexandre et al., 2006 Babitonga Bay 0.67–4.64

Many researchers suggested the direct relationship between 
levels of pollutants and the availability of fine sediments [54-
56]. This process is explained adsorption, co-precipitation, and 
complexing reactions of metals on particle surfaces [57]. In the 
present study, results exposed the dominance of fine sand (Figure 
6), suggesting the influence of macrotidal currents typical in São 
Marco Bay [42] on preventing mud accumulation. Furthermore, 
according to Manning et al. [58] tidal currents are very important 
for sediment distribution in tide-dominated ecosystems. Low 
levels of organic matter were recorded (between 0.54 and 0.91 
%), confirming that low organic matter concentration results for 
sediments with coarser grain size particles [59-61]. Additionally, 
a Spearman test revealed no significant correlation between grain 
size and organic carbon content.

Heavy metals levels showed relatively low concentrations 

in sediments (Table 3). The concentrations of Hg and Cd in the 
sediment showed values below the method detection limit. The 
concentration of Pb, on the other hand, ranged from 0.49 mg 
Kg-1 in February to 1.63 mg Kg-1 in May. A lower concentration 
of Pb was recorded in the sampling stations SM-01 and SM-02. 
Surface sediments concentration of Cu ranged from 1.38 mg 
Kg-1 in February to 1.95 mg Kg-1 in February. For the sediment’s 
Zn concentration, the values ranged from 2.17mg Kg-1 in May 
to3.92 mg Kg-1 in October. Seasonal data show that during the 
study period the sediments’ Zn content was lower in rainy season 
(152.76 ± 46.44 mg Kg-1) compared to the values of dry (198.70 
± 86.09 mg Kg-1) and rainy (211.27 ± 98.46 mg Kg-1) seasons. Cr 
and Ni varied between 1.65–3.56 mg Kg-1 and 1.38–1.92 mg Kg-1 
respectively. Finally, as concentrations varied between, 1.12 and 
1.84 mg Kg-1.

Table 3:  Sediment analysis results.

Parameter Date SM-01 SM-02 SM-03 SM-04 SM-05 SM-06 SM-07

Nitrogen (mg Kg-1)

August/2017 47 54 49.6 61.2 63.4 54.8 69.8

February/2018 44 63 43.5 58.3 59.7 56.5 71.2

May/2018 62 58 54.1 63.1 64.12 48.4 74.2

September/2018 74 62 73.2 58.72 81.12 62.13 69.42

Phosphorus (mg Kg-1)

August/2017 408 400 412 419 402 424 432

February/2018 398 401 392 388 389 412 445

May/2018 411 399 404 414 396 427 418

September/2018 395 405 419 403 417 414 406

TOC (%)

August/2017 0.67 0.62 0.7 0.73 0.65 0.76 0.79

February/2018 0.59 0.58 0.64 0.6 0.61 0.78 0.81

May/2018 0.72 0.64 0.72 0.54 0.72 0.84 0.67

September/2018 0.84 0.76 0.83 0.65 0.83 0.91 0.79
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Copper (mg Kg-1)

August/2017 0.57 0.64 1.563 1.611 1.604 1.592 1.624

February/2018 0.49 0.68 1.549 1.596 1.598 1.588 1.598

May/2018 0.63 0.49 1.623 1.614 1.631 1.496 1.477

September/2018 0.59 0.52 1.458 1.712 1.582 1.532 1.511

Chrome (mg Kg-1)

August/2017 2.239 2.414 3.32 3.46 3.55 3.41 3.56

February/2018 2.114 2.112 3.26 3.39 3.38 3.35 3.48

May/2018 1.802 2.063 3.12 3.56 3.19 3.42 3.27

September/2018 1.651 1.894 2.97 2.92 3.03 3.28 3.19

Nickel (mg Kg-1)

August/2017 1.66 1.75 1.68 1.72 1.79 1.73 1.79

February/2018 1.54 1.52 1.55 1.64 1.72 1.69 1.67

May/2018 1.63 1.39 1.38 1.75 1.84 1.6 1.67

September/2018 1.47 1.77 1.49 1.84 1.92 1.57 1.72

Zinc (mg Kg-1)

August/2017 2.62 2.73 3.6 3.8 3.8 3.55 3.92

February/2018 2.39 2.48 3.3 3.6 3.6 3.48 3.85

May/2018 2.24 2.17 2.98 3.23 3.2 3.33 3.72

September/2018 2.41 2.29 3.09 3.02 3.11 3.44 3.54

Arsenic (mg Kg-1)

August/2017 2.62 2.73 3.6 3.8 3.8 3.55 3.92

February/2018 2.39 2.48 3.3 3.6 3.6 3.48 3.85

May/2018 2.24 2.17 2.98 3.23 3.2 3.33 3.72

September/2018 2.41 2.29 3.09 3.02 3.11 3.44 3.54

Figure 6: Grain size results. 
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In the present study, Canadian sediment quality guidelines 
(Threshold Effect Level - TEL and Probable Effect Level - PEL) 
[51] and the average concentrations of heavy metal in UCC are 
used to compare with heavy metals concentrations in surface 
sediments [62] (Table 4). Although they were developed for 
freshwater environments, the limits suggested by MacDonald 
et al. [51] can be considered conservative, as the precipitates 
formed in the sea water have extremely low solubilities at surface 
water pHs (8.1-8.3) [63], as recorded in the present study. Heavy 
metals concentrations in sediments recorded in the present study 

suggest no risk to the local biotic community [64-70]. 

Concerning the statistical treatment (ANOVA), no significant 
differences were found among surveys. The significant correlation 
between heavy metals suggested the same onshore origin or 
similar responses in relation to environmental parameters [71-
78] (Table 5). The heavy metal concentrations presented relatively 
low levels in the sediments. All the Igeo results confirmed the 
sediment from harbor site as “unpolluted to moderated polluted” 
for all the studied metals since the index remained between 0.59 
and 0.76 [78-85] (Table 6).

Table 4: Concentrations of heavy metals in sediment in estuaries in Brazil , global average, TEL and PEL.

Local: Pb (mg Kg-1) 
Min-Max

As (mg Kg-

1) Min-Max
Cd (mg Kg-1) 

Min-Max
Zn (mg Kg-1) 

Min-Max
Cr (mg Kg-11) 

Min-Max
Cu (mg Kg-1) 

Min-Max
Ni (mg Kg-1) 

Min-Max

São Marcos Bay 
(present study) 0.49 1.71 1.12 1.84 <0.15 2.17 3.92 1.651 3.56 1.38 1.95 1.38 1.92

Ribeira Baya 0.02 0.14 - <0.002 -0.26 164 - 0.03 0.23 <0.05 0.36

Todos os Santos 
Bayb 0.16 107 - 0.003 5.56 0.44 332 - 0.1 429 -

Sepetiba Bayc 6.5 85.7 - 0.5 8.7 18.1 795 23.9 2.1 166 -

Guanabara Bayd 3.6 110 - 0.02 2.6 78 707 3.5 2.4 300 -

Gobal averagee(Soil) 19 1.4 0.03 95 75.6 33 52

TELf 35 5.9 0.6 123 37.3 0.6 18

PELf 91.3 17 3.5 315 90 3.5 35.9

Chiappettaet et al. 2016a; CRA 2004b; Lacerdaet et al. 1987 and Marinset al. 1998c; Fonseca et al. 2013d; Wedepohl 1995e; MacDonald et al 2000f.

Table 5: Pearson Test Results.

 Temp pH Turbidity
D i s s o l v e d 
Oxygen

Salini-
ty Condutibility Eh Cu Cr P Fe Mn Zn

Temp 1            

pH 0.25 1           

Turbidity 0.22 0.07 1          

Dissolved Oxy-
gen -0.19 -0.14 -0.35 1         

Salinity -0.18 -0.62 -0.28 0.21 1        

Condutivity -0.2 -0.56* -0.33 0.17 0.93* 1       

Eh -0.35 -0.1 -0.04 0.28 -0.19 -0.22 1      

Cu -0.58* -0.16 -0.25 0.22 0.15 0.24 0.36 1     

Cr -0.62* -0.18 -0.13 0.24 0.16 0.21 0.32 0.83* 1     

P -0.28 0.28 -0.55* 0.38 0.05 0.17 0.02 0.42 0.36 1    

Fe -0.45 -0.08 -0.27 0.07 -0.01 0.05 0.36 0.70* 0.68* 0.37 1   

Mn -0.64* -0.12 -0.23 0.3 0.16 0.19 0.44 0.84* 0.90* 0.45 0.77* 1  

Zn -0.56* -0.11 -0.25 0.22 0.1 0.12 0.51 0.71* 0.64* 0.39 0.77* 0.88* 1

Bold* = significant correlation (p<0.05)

Table 6: Annual average of Geo accumulation Index (Igeo) results.

 Zn Cu Ni Cr Pb As

SM 1 0.62 0.63 0.62 0.62 0.63 0.72

SM 2 0.62 0.64 0.62 0.62 0.63 0.74
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SM 3 0.59 0.64 0.62 0.63 0.69 0.75

SM 4 0.64 0.64 0.62 0.64 0.7 0.76

SM 5 0.64 0.64 0.62 0.64 0.7 0.76

SM 6 0.64 0.64 0.62 0.62 0.69 0.75

SM 7 0.63 0.64 0.61 0.64 0.69 0.76

Conclusion

The region was characterized by high hydrodynamics, with 
an important influence of oceanic waters, which promotes 
oxygenation and high pH, and prevents water column stratification. 
São Marco estuarine waters presented strong physicochemical 
variations during the study, suggesting a significant climatological 
influence on the water chemistry. Despite the low concentrations 
of heavy metals in the sediment, high levels of metals were 
observed in the water. This aspect was confirmed by the sandy 
grain size found in the sediment samples collected and the low 
organic carbon concentrations, highlighting the importance of 
the currents that added to the proximity of the sampling stations 
to the open sea, the minor industrial and urban concentration in 
the study site as the main factors controlling the quality of the 
environmental conditions.
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