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Introduction 

Tropical and subtropical mangroves are among the most 
biologically productive ecosystems in the world [1,2]. They 
provide important ecosystem services, such as stabilizing and 
protecting shorelines from natural disasters, provide breeding 
grounds for numerous marine and riverine species, and sequester 
carbon [1]. Despite their ecological, biological, and economic 
value, mangroves are significantly degrading and declining at a 
faster rate than inland tropical forests and coral reefs, with only 
6.9% protected under existing protected area networks [1,2]. 
Recent attention has been given to accelerated sea level rise (SLR) 
on the decline of mangrove forests [3-5]. However, disruption of 
upstream supply of fluvial flow and sediment have more extensive 
and immediate effects on mangrove survival rates [6-10]. 

The extent and health of mangroves rely on a balance of 
upstream fluvial processes and coastal processes to supply  

 
incoming sediment. Mangrove sediment accretion increases the 
surface elevation of mangroves which can help offset local SLR 
and protect coasts and adjacent land from erosion and storm 
surges [9]. However, rapid coastal and inland land use change 
alters upstream fluvial systems and shifts the balance of incoming 
sediment to mangroves. Thus, managing riverine sediment 
sources is critical for maintaining the long-term sustainability of 
mangrove ecosystems [11]. 

Although there is significant literature of fluvial, coastal, and 
marine processes and their effects on mangroves, there is limited 
understanding of the complex integrations and interactions 
between these processes and their effect on mangrove 
sedimentation. Furthermore, processes within mangrove estuaries 
that affect sediment accretion rates, such as sedimentation, 
suspension, accretion, erosion, and biologic activity, are not well 
modelled [9]. This creates significant challenges to modelling 
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predicted changes and to effectively conserve and manage 
mangrove ecosystems. Therefore, there is an urgent need for 
improved modelling, monitoring, and management of fluvial 
processes linked to mangrove sediment accretion. 

Sedimentation vs Sediment Accretion 

While often used interchangeably, sedimentation is measured 
on a shorter timescale, often hours to days, and sediment accretion 
rates are measured over months to years [9]. Sediment accretion 
rates depend on sedimentation and resuspension and the shear 
strength of the deposited material that bind it more firmly in place 
[9]. There is also a lateral change in sedimentation rates, with the 
highest rates often occurring along the mouth of rivers. Sediment 
size also decreases with a decrease in flow velocity away from the 
riverbank into the mangroves [12,13]. 

Anthropogenic changes have shorter-term implications for the 
long-term sustainability of mangroves [11,14,15]. Deforestation 
and upstream conversion to agriculture, aquaculture, mass 
tourism, and urban development can significantly increase the rate 
of sedimentation of mangroves [1,16-18]. Excess sedimentation 
negatively effects ecosystem productivity by reduced the vigor of 
mangrove trees, burial of aerial roots, tree die-offs, and invasion 
of upland species [9,19-21]. The increased freshwater inputs 
decrease salinity which can alter species composition in mangrove 
ecosystems [22]. 

Alternatively, dams, reservoirs, sand mining, and agricultural 
diversions can significantly reduce sediment supply to the 
mangroves and can cause subsidence [11,23]. Harbors, ports, and 
coastal structures also disrupt sediment supply [23]. Groundwater 
extraction and saltwater intrusion exacerbate the issue since more 
sediment is needed to counteract subsistence and SLR [3,9,11,24]. 
Increased SLR and subsistence cause landward retreat of 
mangroves; however, anthropogenic changes further inland limits 
the area in which mangroves can retreat, further threatening their 
survival [4, 25-27]. 

Natural processes, such as seasonality and tropical cyclones, 
also influence sedimentation and accretion rates, with lower rates 
during the dry season and higher rates during the rainy season [9, 
28]. Seasonal rainfall increases runoff, groundwater inflow, river 
flow, and sediment discharge. Predicted increases in precipitation 
rates from climate change increases these processes and could 
result in excess sediment accretion rates in the mangroves [29,30]. 

Tropical cyclones often occur during the rainy season and 
can deliver large amounts of sediment to mangroves [9,31]. 
These lower frequency, high intensity events could be critical 
in maintaining mangroves in regions with less sediment inputs 
and higher subsistence rates [9,32-34]. Heavy rainfall from 
intense storm events cause surface runoff, subsurface flow, 
and river flooding. Simultaneous tides and storm surges, along 
with underlying conditions, can cause compound flooding that 
amplifies sea levels and leads to prolonged and widespread 

flooding along the coast and further inland [29,30,35].

Although incoming sediment is increased by large storm 
events, excess sedimentation and prolonged inundation can cause 
compression and lead to the decline of mangroves, which lowers 
surface elevation [9,36,37]. Moreover, large storms can affect 
erosion thresholds by lowering the shear strength of mangrove 
soils and increasing shear stress from waves and currents [9,38]. 
Predicted increases of intensity of flooding and tropical cyclones 
due to climate change is expected, further supporting the need 
for long-term monitoring and management of hydrologically 
connected rivers associated with mangroves [38]. 

Mangrove sediment records can be used to reconstruct the 
paleoenvironmental records of sea level and climate change 
fluctuations as well as mangrove sediment accretion rates and 
survival overtime [9,25,28]. In several locations, mangrove 
sediment records indicate mangrove accretion rates have kept 
pace with SLR for thousands of years, but there is limited spatial 
and temporal frequency of this data [9]. Mangrove sediment 
records can also indicate large storm events by the thickness of 
sand layers [39]. Because mangroves are also major producers 
and sequesters of organic carbon, radiometric dating can also 
provide evidence of sea level when the peat was formed and SLR 
can be reconstructed using multiple dates [9,25, 40-45].

The Need for Improved Modelling

Tropical and sub-tropical regions, where mangroves exist, 
are at a significant risk from the combined anthropogenic and 
climate change effects. Yet, current modelling of mangrove 
sedimentation is insufficient to account for the hydro-geomorphic 
connection between mangrove sediment accretion and upstream 
hydrology. Additionally, mapping techniques, although rapidly 
improving, have limited precision to track sediment accretion, 
subsurface processes, stormwater infrastructure, or to quantify 
compound coastal and riverine flooding [4,30,46]. The complex 
interrelations between regional to local scales of fluvial, coastal, 
and sedimentation processes and the compounding and 
amplifications of these processes due to climate change and 
anthropogenic activity provides an added constraint to current 
modelling efforts [4,9,30-32].

Furthermore, most hydrologic models have been created 
in and primarily for temperate regions with extensive 
hydrometeorological monitoring networks. Particularly 
in developing regions in the tropics, hydrometeorological 
monitoring networks are often spatially and temporally limited 
to fully identify the upstream hydrology and sediment fluxes 
that affect mangrove estuaries [47,48]. Furthermore, upstream 
modifications, such as impervious surface, altered stormwater 
conveyance, and dams are not adequately represented [49]. 
Consideration should also be given to the accuracy of limited data 
or single-point observations, modelling, and numerical values that 
are extrapolated spatially and temporally to represent upstream 
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fluvial, coastal, and sediment processes. There are also critical 
knowledge gaps between small-scale mechanisms of mangrove 
sediment flux and vulnerability in relation to large scale processes 
[4,11,50]. 

Conclusion 

Although mangroves are threatened by SLR, the persistence 
of mangroves show they are reasonably capable of adapting and 
responding; however, anthropogenic changes along the coast and 
inland represent a greater threat to mangroves [9,25]. Global 
monitoring of riverine sources is needed in addition to limits 
to mass tourism, deforestation, and upstream land use change 
[22]. Land should also be provided for mangroves to retreat 
landward [9]. Rapid development and expansion of urbanization 
further exacerbates negative effects of sedimentation and loss 
of mangroves, thus, there is a need for improved monitoring as 
well as an integrated modelling approach for better management 
decisions. The lack of integrated flood modelling leaves local 
communities ill-prepared to make effective management decisions 
[30]. Increased collaboration is needed between researchers, 
local, regional, and international agencies, and local communities 
to ensure resiliency of coastal areas, including mangroves, and 
connected land and water upstream.
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