Casualty Agent (Yersiniosis) Detection in Reared Rainbow Trout (*Oncorhynchus mykiss*) in Kohgiluyeh-Za-Boyerahmad Province in Iran

Mohammedsaeed Ganjoor*

Genetic and Breeding Research Centre for Cold Water Fishes (Yasuj city), Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), I.R, IRAN.

Submission: May 30, 2017; Published: August 01, 2017

*Corresponding author*: Mohammedsaeed Ganjoor, Department of Health and Fish Disease, Genetic and breeding research center for cold water fishes shahid-motahari, Yasuj, PO Box: 75914-358, Iran, Email: msg_ircc@yahoo.com

Abstract

From the June to the August 2013, Casualty happened in fish of some ponds of a farm in an area of Kohgiloye-Za-BoyerAhmad province. It is a province in southwest of Iran. Three ponds from eight showed more mortality, they have 5 to 20 dead fish every day for 45 days. Afflicted fish have dark body they swimming near surface or at the bottom of the pond and swam unmatched by the flock. Some fish showed hemorhages around eye and within the oral cavity and exophthalmia occasionally. 45 moribund rainbow trout sampled for dissection and bacteriological examination. Kidney, liver and spleen of moribund fish examined for the detection and identification of bacteria causative agent of disease in rainbow trout. They cultivated aseptically on different media (Blood Agar, Tryptic soy Agar, TCBS Agar and MacConkey Agar).

All fish have been infected and suffered septicemia. Atype of gram’s negative bacterium was responsible of infection and mix infection didn’t confirmed. The bacteria were able to growth on MacConkey agar. Detection had done based on clinical finding biochemical tests and staining. Based on it, the bacteria was a bacterium very similar with *Yersinia ruckeri* which induced infection. Identification continued by PCR method, therefore above result confirmed. Frequency of infectious fish estimated at least 0.375 percent. Application of enrofloxacine for 7 days reduced mortality but could not eradicate the infection so antibiotic therapy repeated 7 days more to eradication.

Keywords: *Yersinia ruckeri*; Disease; Rainbow trout; Kohgiluyeh & Boyerahmad

Abbreviations: ERM: Enteric-Red-Mouth Disease; BA: Blood Agar; TSA: Tryptic Soy Agar; TCBS: Thiosulphate Citrate Bile Sucrose Agar; TSI: Triple Sugar Iron; CU: Citrate Utilization; MR: Methyl Red; TSB: Trypticase Soy Broth

Introduction

Nowadays, Rainbow trout culturing has been developed in Kohgiloyeh-Za-Boyer Ahmad province of Islamic Republic of Iran. It is a province in the southwest of Iran. There are many water resources in the province which originated from Zagross mountains so aquaculture is a lucrative profession in the province. Rainbow trout cultivated solely. In 2013 AD about 13400 tons fish (*Oncorhynchus mykiss*) cultivate in the province. It cost is about 38 million dollars [1]. Infectious diseases are being emerged due to developing fish culture at artificial condition especially at intensive systems. On the other hand circulated water and intensive system increase disease incidence [2]. Fish are depressed by low water flow in warm seasons and infectious agents may release in ponds by recirculated water. Depression decrease immunity in fish and water recirculation spread pathogens in fish flock horizontally especially while circulated water wasn’t treated properly.

*Yersinia ruckeri* causes Enteric-red-mouth disease (ERM) in rainbow trout. It is an important disease of salmonid fish and was first described by Ross et al. [3] and Rucker [4]. The disease has been called in other word such as: Yersiniosis, Yersinic septicemia, Hagerman-redmouth-disease, etc. ERM produces high mortalities and severe economic losses on fish farms [5].

Enteric red mouth disease (ERM) has been one of the most significant diseases in salmonid aquaculture. Even though the disease has been diagnosed more than 25 years ago and commercial vaccines are available [6,7]. ERM have reported from several countries such as turkey, USA, Romania and Iran [8-11]. ERM is being reported since last few years from some provinces (Tehran, Fars, Hamadan and Chaharmohalvabakhtiyari) in Iran [12-15].

Signs of ERM particularly in infected rainbow trout may include hemorrhages in various tissue and organs, particularly
around the mouth, mouth cavity, in the gills, in the musculature, the peritoneum, the body fat, viscera and in intestine. Clinical infection can also be characterized by a yellow discharge from the vent. Furthermore, severe inflammations of the distal portion of intestine and vent are frequently observed [16,17].

Y. ruckeri has been isolated from different salmonids (Oncorhynchus spp.), Pike, eel, carp, perch, roach, sturgeon and turbot. Further, it has also been isolated from freshwater invertebrates [18,19]. It is probably persistent in the environment, and transmit horizontally [17].

Materials and Methods

Fish

Three ponds from eight ponds have more mortality. It estimated that each pond contained about 4000 fish. 45 moribund rainbow trout with abnormal signs such as skin darkness, bad swimming, hemorrhagic were sampled from the ponds and examined for the presence of the etiological agent of the disease by dissection and bacteriological procedures.

Bacteriological examination

Plate culture is commonly used to isolate Y. ruckeri, so it used to isolation, then identification done by biochemical tests and staining [20,21].

Kidneys, Livers and Spleen of fish were cultured aseptically by streaking a loop onto Blood Agar (BA), Tryptic Soy Agar (TSA), Thiosulphate Citrate Bile Sucrose Agar (TCBS) and MacConkey Agar plates and incubated at 30 °C for 48 hours. Isolated colonies were subcultured onto TSA and identified using conventional biochemical tests [22]. Characteristics of our isolated bacterium were compared with the reported biochemical properties of the Yersinia ruckeri in the literature [2,6,21,22].

Isolated colonies have been identified by biochemical test contains Catalase, Oxidase, Growth on TSI medium (triple sugar iron), Citrate utilization, Methyl Red (MR), Motility, H2S production, Indole, Growth at %6.5 NaCl and OF-test [23].

PCR method

Isolated colonies of bacteria evaluated by PCR assay. The bacteria cultured on TSB (Trypticase soy broth) medium (Merck, Germany) and was incubated at 30 °C for 48 hours, Then DNA isolated and extracted from it. Therefore, One milliliter of culture was centrifuged for 5min at 12,000 × g, the pellet was resuspended in 50ml of distilled water, and cells were lysed by boiling for 10min. Cell debris was removed by centrifugation for 30s at 12,000 × g. Aliquots of 5 μl of supernatant were removed and was used as template DNA for the PCR assay. PCR conditions consists of: Annealing temperatures (60 °C), polymerase concentrations (1.5U), deoxynucleoside triphosphate (dNTP) concentrations (200 μM), MgCl2 concentrations (2mM). PCR was performed in 50μl reaction mixtures containing 15 μl of sample as template DNA. The forward and backward primers which used in the detection of Y. ruckeri was [24].

(YER3, 5’ CGAGGAGGAAGGTGTAAATG 3’)
(YER4, 5’ AAGGCACCAAGGCATCTCT 3’)

Thermal cycling was done with the following conditions: an initial denaturation cycle at 94 °C for 2min, followed by 35 cycles of amplification (denaturation at 94°C for 40s, annealing at 60 °C for 40s, and extension at 72 °C for 60s), and a final 5min elongation period at 72 °C. Finally, PCR product were analyzed by electrophoresis on 1.5% agarose gels and stained with ethidium bromide [24].

Anti biogram test

Anti biogram test achieved based on disk diffusion method [23].

Results

Table 1: Properties of the isolated colonies at 30 °C.

<table>
<thead>
<tr>
<th>Biochemical Tests</th>
<th>Colonies (Isolates of this study)</th>
<th>Y. ruckeri [2]</th>
<th>Y. ruckeri [22]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram’s St</td>
<td>Neg.</td>
<td>Neg.</td>
<td>Neg.</td>
</tr>
<tr>
<td>Growth on Blood Agar</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth on TSA</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth on MacConkey Agar</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth on TCBS</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>No (W)</td>
<td>No (W)</td>
<td>No (W)</td>
</tr>
<tr>
<td>Result of growth on TSI</td>
<td>K/A; No Gas; No H2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Red</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
F 29 tests from the 19 tests ND F 

Medium (TCBS agar) caused to was rejected the possibility of Lactococcus. Also, the lack of growing on Vibrios’-selective such that mentioned bacterium couldn’t be Streptococcus and in form of cocco-rod shape. Therefore, according to the issue and a type of gram negative bacterium. The bacterium has been seen growing on MacConkey agar show that the septicemia caused by infection didn’t confirm. On the other hand, Gram’s staining and Only a kind of colony has been grow on culture media, so mix species.

The isolates are belong to the Yersinia genus as evaluated by PCR assay. However, PCR procedure confirmed that bacteria in this study found to be very similar with Y. ruckeri. by Austin and Austin [22] and Akhlaghi [2]. The isolated bacteria in this study found to be very similar with y. ruckeri. After biochemical tests some isolated colonies (10 colonies) evaluated by PCR assay. However, PCR procedure confirmed that the isolates are belong to the Yersinia genus as Yersinia ruckeri species.

Discussion

All samples were contaminated and a type of bacterium isolated from Liver, Kidney and spleen of all the moribund fish. Only a kind of colony has been grow on culture media, so mix infection didn’t confirm. On the other hand, Gram’s staining and growing on MacConkey agar show that the septicemia caused by a type of gram negative bacterium. The bacterium has been seen in form of cocco-rod shape. Therefore, according to the issue and also according to the examining results of catalase was inference such that mentioned bacterium couldn’t be Streptococcus and Lactococcus. Also, the lack of growing on Vibrios’-selective medium (TCBS agar) caused to was rejected the possibility of existence of vibriosis illness. It should be acknowledge that the separated bacterium was similar to Yersinia ruckeri from the view point of characteristic features, according to clinical signs and performed biochemical tests. It confirmed by PCR procedure.

It stated that yersiniosis was observed in rainbow trout at acute and chronic form and the bacteria may cause infection in all of ages of the fish [2]. Our observation also shows that some infected fish indicate clinical signs obviously, and the others have fewer signs with more activity and affected by pathogen later. Also, this matter is the reason of casualty’s stairs. It founded that weaker fish become ill too early and stronger fish subsequently. The total mortality was about 1.87 to 7.5 percent in the 3 pounds.

Although 14 biochemical tests achieved but identification was not valid so there is need to a procedure to complete detection. Bacterial detection performed by PCR-assay. It confirmed the identity of the bacteria. PCR results shows that the bacteria were belong to the Yersinia ruckeri species clearly.

Also, in current research both of fry fish and adult fish were infected and pathogen found in both of them. Therefore, the bacterium is able to cause infection in fish at different ages. But, we ought to mention that infection was acute in fry fish compare with adults. Guguianu also has been declared fry fish are more susceptible with the yersiniosis [9]. The application of Tetracycline or Enrofloxacine for 7 days as food additive show that both of the antibiotics are effective against this disease and cause to reduce mortalities but wasn’t enough to eradicate of the disease. So, it recommended that the length of therapy should select more than 7 days.

References

6. Horne MT, Barnes AC (1999) Enteric redmouth disease (Yersinia ruckeri). In: Woo PTK, Bruno DW (Eds.), Fish diseases and disorders -


Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php

This work is licensed under Creative Commons Attribution 4.0 License
DOI: 10.19080/OFOAJ.2017.04.555633