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Mini Review
Stratospheric depletion of ozone layer has resulted in an 

increase in the solar UV-B radiation (280 to 320 nm) reaching 
the Earth’s surface. UV-B radiation is potentially harmful to 
all forms of life but is more detrimental to photosynthetic 
organisms, including cyanobacteria. Cyanobacteria are the 
largest and most widely distributed group of photosynthetic 
prokaryotes on the Earth, and their contribution to global CO2 
and N2 fixation is remarkable. These organisms are proficient 
in fixing atmospheric nitrogen using enzyme nitrogenase 
hence potentially recognized as a biofertilizer in rice paddies 
[1] and other crops. They are important constituent of aquatic 
ecosystem which is one of the most productive and diverse 
ecosystem thus any alteration in the size and composition of 
phytoplankton communities will directly affect its productivity. 
Hence, it is quite relevant to study the effects of ultraviolet (UV-
B) radiation on them. The aquatic ecosystem has shown a large 
sensitivity towards increased solar ultraviolet radiation resulting 
in decreased biomass productivity, reduced food production 
for humans [2], reduced sink capacity for atmospheric carbon 
dioxide [3,5,6] as well as changes in species composition and 
ecosystem integrity. In cyanobacteria, UV-B radiation has been 
found to affect a number of physiological and biochemical 
processes such as growth, survival, cell differentiation, motility, 
pigmentation, photosynthesis, nitrogen metabolism, and protein 
profile [7,8,9]. It also affects membrane permeability, pigment 
stability, nutrient uptake mechanisms and signal transduction 
through phytochrome or specific UVB photoreceptors [10] 
Portwich [11]; Kumar et al. [12]; Cadoret et al. [13]. However, 
enzymes such as nitrate reductase, glutamine synthetase and 
glutamate synthase are less sensitive to elevated level of UV-B 
intensity [14] and the response of cyanobacteria towards UV-B 
radiation differs in various species. DNA and photosynthesis 
are recognized as the most predominant targets of UV-B [15]. 
It has been shown that UV-B affects the photosynthetic electron 
transport and pigment-protein complexes in cyanobacteria  

 
by photobleaching of photosynthetic pigments, reduction in 
phycobili protein content and disassembly of phycobilisome 
complex [16]. Additionally, several studies have demonstrated 
that UV-B radiation affects spectral properties of pigments 
specifically chlorophyll a and phycobiliproteins of cyanobacteria 
[8] and also influences the chlorophyll and carotenoids contents 
in cyanobacteria [8,17,18]. Observed a down regulation of 
transcripts including mRNAs specifying proteins involved in 
light harvesting and photosynthesis after UV-B exposure. The 
photosynthetic parameters such as CO2 uptake, O2 evolution and 
ribuolose-1, 5 bisphosphate carboxylase/oxygenase (RUBISCO) 
activities are also down regulated [9]. 

The D1 and D2 proteins that are major constituent of PSII 
reaction center are degraded by exposure of UV-B. Exposure 
of UV-B radiation also results in significant alterations of total 
protein profile of cyanobacteria [16]. Total proteome analysis 
of Synechocystis sp. PCC 6803 by 2-dimensional (2-D) gel 
electrophoresis showed different level of proteins expression 
in the cytoplasm under short and long-term UV-B stress [18]. 
Cyanobacteria exposed to UVR have evolved a number of 
mitigation strategies to reduce its direct and indirect damaging 
effects. The first line of protective strategies include migration 
from high level to low level of UV intensity in water column, 
formation of mats/crust, changes in morphology or synthesis of 
extracellular polysaccharides i.e. gypsum crystals. To escape from 
high solar radiation, motile cyanobacteria in mats often migrate 
up and down-wards depending on the spectral waveband [19]. In 
planktonic cyanobacteria, sinking and floating regulated by gas 
vacuoles are also protective strategies against UVR [20]. Another 
mode of defense is the generation of antioxidants in response 
to reactive oxygen species generated during UV-B stress. The 
enzymatic antioxidants are superoxide dismutase (SOD), 
catalase, glutathione peroxidase (GSH-Px) and the enzymes 
involved in the ascorbate-glutathione cycle to detoxify the ROS 
such as ascorbate peroxidase (APX), monodehydroascorbate 
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reductase (MDHAR), dehydroascorbate reductase (DHAR) 
and glutathione reductase (GR) [21]. Exposure of DNA to UV-B 
causes several types of DNA lesions, which are mainly repaired 
by photoreactivation (light-dependent) and excision repair 
(light-independent) mechanism. Photoreactivation occurs 
with the help of the photolyase enzyme that specifically binds 
to cyclobutane-pyrimidine dimers (CPDs) or 6-4 photo-lyase 
(6-4PPs) and reverses the damage after absorption of light 
energy at 400nm [22]. The major photo reactivating factor phrA 
in the Cyanobacterium Synechocystis sp. PCC6803 codes for a 
cyclobutane-pyrimidine dimer-specific DNA photolyase. In the 
excision repair process, various enzymes (e.g. glycosylases or 
polymerases) are involved. First, the damaged DNA is nicked 
and then the short single strand segments are important role in 
photoprotection as they are located in the extracellular glycan 
layer covalently linked to oligosaccharides [23,24]. In most 
cyanobacteria, however, MAAs is located in the cytoplasm, where 
only 10-26% of harmful radiation is absorbed by this compound 
[25]. Besides acting as sunscreens, MAAs may provide additional 
protection as antioxidants [26]. Another UV-absorbing 
component known for UV-screening properties in cyanobacteria 
is scytonemin which is formed by condensation of tryptophan 
and phenyl-propanoid derived subunits [27]. Cyanobacteria may 
also undergo apoptosis or programmed cell death (PCD) when 
a cell is damaged beyond repair. An autocatalytic PCD induced 
by high irradiance was found to operate in the nitrogen-fixing 
Cyanobacterium Trichodesmium sp. [28]. The caspase activity 
involved in PCD was observed in Microcystis aeruginosa [29] as 
well in Trichodesmium sp. [28] implicating the role of PCD under 
oxidative stress [30-35].
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