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Need for Organophosphorus Flame Retardants

The development of polymeric materials during the mid-
twentieth century has permitted huge enhancement of the 
standard of living of peoples in most areas of the world [1,2]. 
Despite their many attractive features these materials are, in 
the main, quite flammable and must be flame retarded for most 
applications [3]. Over the decades, many substances have been 
utilized as flame retardants, most often as additives that could 
be introduced into a polymer matrix during processing. Among 
a wide range of potential flame-retarding agents, two have been 
most prominent. Both are organic: organo-halogen, particularly 
brominated aryl ethers, and organophosphorus compounds [4-
6]. Traditionally, organo-bromine flame retardants have been 
industrial favorites. On an elemental basis alone, bromine is 
much more available, and much less expensive than phosphorus. 
Phosphorus compounds are also in high demand for other 
applications such as fertilizer and food additives [7,8]. The popular, 
decabromodiphenyl ether, is derived from a byproduct of phenol 
production [9]. Cost alone does not account for the widespread 
use of bromo-aromatics. They function as very effective flame 
retardants. They undergo decomposition in the temperature 
range for degradation of a range of polymers to liberate hydrogen 
bromide to the gas phase where it serves as an effective scavenger 
for combustion propagating radicals. 

Unfortunately, despite the effectiveness of these compounds, 
they display several features which negatively impact their use 
[4]. Decomposition at high temperature is accompanied by the 
formation of volatile, very toxic dioxins [10]. More importantly, 
they tend to migrate from a polymer matrix into which they 
have been incorporated. This is particularly a problem for items 
discarded in a landfill [11]. These materials enter the environment, 
tend to bioaccumulate and may enter the human food chain. 
Human exposure to organo-halogen flame retardants can lead 
to a range of disease states, most associated with endocrine 
disruption [12]. For this reason, both regulatory and societal 
pressure have stimulated a reduction in the use of these materials. 
Organophosphorus compounds have risen to prominence as 
replacements. In particular those derived from renewable, 
readily available, low-cost nontoxic bio-sources have gained 
attention [13,14]. Those that may be covalently incorporated into 
the polymer structure or that are highly branched oligomeric 
compounds seem to hold great promise [15,16]. Not only do these 
materials provide efficient flame retardancy but are not prone to 
migration and loss to the surroundings.

Phosphorus Compounds

Phosphorus compounds have long had a prominent impact on 
society. From the earliest establishment of organized communities, 
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phosphorus compounds have been utilized as nutrients for crop 
production [17]. They have also been widely used as additives 
in both animal feed and food for human consumption. Huge 
amounts of these compounds are consumed annually. Phosphorus 
compounds are required for both plant and animal growth and 
development. 

Phosphorus compounds have been hugely impactful in 
other areas as well. While the volumes have been much smaller 
than that in the nutrient area, they nonetheless have had major 
societal influence. At one extreme lie the organophosphorus 
warfare agents [18,19]. These compounds often contain a P-F 
bond. More important, of lesser but significant toxicity, are the 
pesticides [20]. Many of these compounds contain a P=S bond. 
Hugely significant has been the development of herbicides [21]. 
Glyphosate [N-(phosphonomethyl)glycine] has been the most 
widely used and effective of the organophosphorus herbicides. 
It acts on a pathway not available in mammals and therefore 
displays little human toxicity. It has been extremely successful 
when used with herbicide-resistant crops [22]. The development 
of effective pesticides and herbicides has revolutionized 
agriculture and permitted the production of food to sustain an 
ever-increasing world population. An important, but still smaller 
in production volume, class of organophosphorus compounds are 
flame retardants. These have permitted the utilization of many 
materials that, while displaying several desirable features, are 
highly flammable without modification.

Toxicity of Organophosphorus Flame Retardants

The development and use of organophosphorus flame 
retardants is currently of great interest. These materials 
provide great potential for polymer modification to reduce 
flammability. This without the toxicity problems associated with 
the use of organo-bromine counterparts. This is particularly 
true for organophosphorus compounds derived from renewable, 
readily-available, nontoxic biobased precursors. Now that 
organophosphorus flame retardants are becoming more 
prominent, human exposure to these materials and potential 
toxic effects have begun to be of concern [23-27]. Thus far 
toxicity assessment results are not definitive. The earliest 
organophosphorus flame retardants were simple phosphate 
esters. In general, these display low toxicity, most usually 
adverse neurodevelopment in children. However, toxicity 
is strongly structure dependent. Often sets of compounds 
for toxicity assessment contain esters of varied structure - 
linear alkyl, branched alkyl, variously substituted aryl or even 
haloalkyl [27,28]. Not surprisingly, haloalkyl phosphorus esters 
display greater toxicity than do nonhalogenated analogs (these 
compounds should more properly be treated as organo-halogen 
flame retardants containing a phosphorus atom). Systematic 
studies, with appropriate attention to dose level, of independent 
classes of organophosphorus esters-linear alkyl esters of varying 
chain length, branched akyl esters, aryl esters containing various 
substituents-should be conducted to provide meaningful data to 
guide the synthesis and use of these compounds.

It has been noted that organophosphorus flame retardants 
with low levels of oxygenation at phosphorus, particularly 
DOPO (9,10-dihydro-9-oxa-10-phosphaphenathrome-10-oxide) 
esters, display little toxicity [29,30]. This observation needs to be 
examined in detail. Can toxicity of these compounds be correlated 
with the level of oxygenation at phosphorus. A systematic, careful 
study of toxicity versus level of oxygenation at phosphorus could 
provide, not only guidelines for selection of the most appropriate 
compounds for use but also direction for the synthesis of effective, 
nontoxic organophosphorus agents.

Conclusion

Organophosphorus flame retardants for polymeric materials 
are rapidly replacing traditional organo-halogen compounds 
which are persistent in the environment and display significant 
toxicity. In the main, organophosphorus flame retardants exhibit 
low toxicity. However, toxicity studies have yielded mixed results. 
This has largely arisen from the inclusion of compounds of quite 
varied structure within sample sets of compounds to be evaluated. 
Careful studies with attention to structure and dose level are 
needed to provide useful data. This information is needed to 
provide meaningful guidelines for the synthesis and use of new 
organophosphorus flame retardants.
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