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Introduction
At rest, the cytoplasmic concentration ([Ca2+]i) in mammalian 

cells is very low (50-100 nM) [1]. Excitotoxicity results in a signif-
icant increase in Ca2+ influx essentially from open N-methyl-D- as-
partate receptors (NMDARs) channels that cause a secondary rise 
in the intracellular Ca2+ concentration [2], Glutamate is capable 
of to killing neurons with excitotoxicity [3]. This secondary over-
load is correlated with neuronal death induced by Ca2+ overload 
[4]. Dysfunction of NMDARs is associated with excitotoxic neuro-
nal death in neurodegenerative disorders [5]. Glutamate excito-
toxicity is a critical factor in brain damage leading to brain and 
neurodegenerative disorders, such as; Alzheimer’s disease. The 
mechanism of excitotoxicity is causally linked to an intense ele-
vation in cytoplasmic calcium concentration ([Ca2+]c) that leads to 
cell injury and neuronal death [6-8]. Correspondingly, stabilizing 
low cytosolic Ca2+ by chelation with BAPTA [(1,2-bis(o-aminophe-
noxy) ethane-N, N, N, N-tetra acetic acid;)] increases the survival 
rate of neurons exposed to excitotoxic glutamate [9,10].

In the central nervous system of mammals, 𝛼-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) and 
NMDARs primarily mediate fast excitatory neurotransmission. 
Ca2+ permeability; allows NMDARs to play a vital role in brain  

 
damage, neuropathology, and neuroplasticity [11]. The glutamate 
receptors of AMPA and NMDA are permeable to Ca2+ and are ex-
pressed in the brain regions responsible for cognitive functions, 
such as neocortex and hippocampus [12]. The receptors are het-
erothermies comprising a combination of GluN1, GluN2A-D and 
GluN3A-B subunits [13]. NMDARs receptors activation leads to 
opening of an ion channels that is permeable for cations, resulting 
in the influx of Na+ and Ca2+ ions and efflux of K+ ions [14]. During 
excitatory neurotransmission, presynaptic release of glutamate 
activates glutamate receptors in the postsynaptic membrane, re-
sulting in the generation of an excitatory postsynaptic potential 
[15]. Phosphorylation of glutamate receptor regulates the Ca2+ 
channels and Ca2+ permeability [16].

NMDARs have a high affinity to stimulate L-glutamate [17]. 
L-glutamate is the strongest NMDA agonist (EC50 2.3 μM) [18]. 
Hemin is an iron–protoporphyrin molecule consisting of four pyr-
role rings [19]. Hemin is cytotoxic due to its ability to contribute 
to the generation of reactive oxygen species [20]. As respects, he-
min play an crucial role in correlated with neuronal death induced 
by Ca2+, In this study, the effects of hemin on Ca2+ permeability in 
neurons of C57BL/6 mouse brain examined.
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Methods
Cell culture

Twenty-eight 1day-old C57BL/6 male mice were prepared 
from Animal Center of School of Medicine, Shiraz University of 
Medical Sciences, Shiraz, Iran. They were kept cages (4 mice per 
cage) at room temperature and provided with a balanced diet, 
Light cycle with 12h light, 12h dark. The mice randomly divided 
into 6 groups; and anesthetized with Ketamine (87 mg/kg) and 
Xylazine (13 mg/kg). All mice were killed, and their brain and neo-
cortex were removed. Neurons isolated by neutrosphere method 
and were cultured in Dulbecco’s Modified Eagle Medium (Thermo 
Fisher Scientific). Cells were maintained in growth medium at 37 
°C in 95% air/5% CO2 for 2 weeks in vitro before treatment. Pri-
mary postnatal neurons cultured in serum-free media were treat-
ed with hemin (Frontier Scientific; 0, 12.5, 25, 50, 75,100 μM) for 
18 h [21].

Calcium imaging
The neurons were incubated in medium with (Fluo-8 AM) 

(ATT Bio quest, Inc) for 1 h at 37°C. The neurons were then 
washed twice with Hank’s Balanced Salt Solution (Frontier Scien-

tific), containing CaCl2 (2 mM) and MgCl2 (1 mM). The intensity 
of Flu-8 AM fluorescence was evaluated after adding NMDA (100 
μM) and Nifedepine (10 μM) to neurons, with hemin. The inten-
sity of fluorescence was measured of 482 nm and 505-530 nm 
(emission reverse microscopy) (Leica HC PL FLUOTAR 20×/0.50 
objective, Lambda DG-5 Plus) [22].

Statistical analysis
Statistical analysis was carried out using ANOVA; with SPSS 

19. One-Way ANOVA was used to test for differences in mean val-
ues from multiple samples (calcium imaging data) with compari-
son tests. Statistical difference between two means was analyzed 
by two-tailed unpaired or paired Student’s t-test. Differences 
were considered significant if p<0.05. All data are expressed as 
mean±SEM.

Results

Primary postnatal neurons cultured in serum-free media were 
treated with hemin (0, 12.5, 25, 50, 75,100 μM) for 18 h. fluores-
cence was reduced in treated cultures with hemin (100, 86, 78.5, 
60, 56, 46%, respectively) (P < 0/05 for all) (Figure 1 & Table 1).

Figure 1: The Intensity of Calcium Fluorescence in Treated Cultures with Hemin. Primary Neurons Cultured in Serum-Free Media were 
Treated with Hemin (0, 12.5, 25, 50, 75,100 μM) for 18 h. Intensity of Calcium Fluorescence was Reduced in Treated Cultures with Hemin 
(100, 86.5, 78.5, 60, 56,46%). [*P < 0/05; **P < 0/01; ***P < 0/001].

Table 1: Reduction in Calcium Florescence in Postnatal Neurons Treated with Various Concentrations of Hemin.

Group Hemin (μM) Calcium Fluorescence (%) P Value

N=1 0 100 0.043

N=2 12.5 86.5 0.038

N=3 25 78.5 0.024
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N=4 50 60 0.0034

N=5 75 56 0.00028

N=6 100 46 0.00012

Discussion

Ca2+ influx is regulateds by NMDARs subunits [23]. NMDAR 
stimulation increases Ca2+ influx [24]. Stimulation of NMDAR ac-
tivates Ca2+ signaling pathway in neurons [25]. Conversely, inhibi-
tion of NMDARs inhibits it [26]. Hemin suppresses NMDAR activ-
ity [27], by regulating the GluN1, GluN2A and GluN2B subunits of 
NMDA [28]. NMDAR stimulation by hemin was increased activat-
ing of NMDARs and Ca2+ influx in the cultured neurons.

Data availability

All data relating to the present study are contained in Table.
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