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Abstract

The Burr system of distributions [1] arise from a differential equation with solution
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where g(x) is a function whose integrals are such that F(x) increases from 0 to 1 on the interval −∞  < x < ∞ . Inspired by the T − R {Y} 
framework of creating probability distributions [2], this paper assumes T is a Burr II random variable, to introduce also-called Burr II-R{Y} family 
of distributions. A member of this family is shown to be a good fit to the precipitation data [3]. Finally, as this article is introductory in nature, the 
reader is asked to further investigate some properties and applications of this new class of statistical distributions.
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Introduction and the new family
Let T, R, Y be random variables with CDF’s 

( ) ( ) ( ) ( ),  FT RF x P T x x P R x= ≤ = ≤ and ( ) ( ) ,YF x P Y x= ≤ respectively. Let the 
corresponding quantile functions be denoted by QT (p), QR(p),  
and QY (p), respectively. Also, if the densities exist, let the corre-
sponding PDF’s be denoted by ( ) ( ) ( ), ,  f ,T R Yf x f x and x respectively. 
Following this notation, the CDF of the T − R{Y } family is given by 
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and the PDF of the T − R{Y } family is given by 
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 On the other hand, the CDF of the Burr II distribution is given 
by ( ) ( ); = 1

rxF x r e
−− + [1]

where   < x< ,− ∞ ∞ By differentiation, the PDF of the Burr II dis-
tribution is given by
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From the CDF of the T − R {Y} family of distributions we have 
the following 

Proposition 1.1. The CDF of the Burr II-R{Y} family of distri-
butions is given by 
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where the random variable Y has quantile QY , r > 0, and the 

random variable R has CDF FR. The parameter space of ξ  and x 
depends on the chosen baseline distribution of the random vari-
able R.by differentiating the CDF in the previous Proposition, we 
have the following.

Figure 1: The CDF of BIIWSEV (3.64688, 1.93424, 0.54937) 
fitted to the empirical distribution of the precipitation data [3].
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Proposition 1.2. The PDF of the Burr II-R{Y} family of distri-
butions is given by
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where the random variable Y has quantile QY and PDF fY , r > 
0, and the random variable R has CDF FR and PDF fR. The param-
eter space of ξ  and x depends on the chosen baseline distribution 
of the random variable R The rest of this paper is organized as 
follows. In section 2, we illustrate the new family. The last section 
is devoted to the conclusions and some further recommendations 
(Figure 1).

Practical illustration
We assume R is a Weibull random variable with the following 

CDF
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for x, a, b > 0. We assume Y is standard extreme value, so that

( ) ( )( ) log log 1YQ p p= − −  [4]

 for 0 < p < 1. Now from Proposition 1.1, we have the following 

Corollary 2.1. The CDF of the Burr II-Weibull {Standard 
Extreme Value} distribution is given by 
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where x, a, b, r > 0

Notation 2.2. We write c   BIIWSEV (a, b, r), if C is a Bur II-
Weibull {Standard Extreme Value} random variable.

Concluding Remarks and Further Recommendations
In this paper we introduced a so-called Burr II-R{Y} family of 

distributions and showed a member of this class of distributions is 
a good fit to the precipitation data [3]. As this paper is introducto-
ry in nature; we ask the reader to further explore some properties 
and applications of this new class of distributions.
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