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Abstract

The advancement of the next generation energy storage and conversion technologies has increased the demand for new materials with tunable
structures, high stability, and multifunctional properties. Metal-organic frameworks (MOFs) are a class of porous crystalline materials composed
of metal ions and organic linkers that have emerged as promising candidates due to their structural versatility and chemical tailor ability. This
review provides an overview of recent progress in harnessing MOFs and their derivatives for energy related applications, including batteries,
supercapacitors, and fuel cells. Emphasis is placed on material design strategies, structure property relationships, and performance optimization.
Furthermore, challenges associated with scalability, conductivity, and long-term stability are discussed, along with emerging opportunities such
as machine learning driven MOF design and green synthesis pathways for sustainable implementation in future energy systems.
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Introduction

The development of Metal-Organic Frameworks (MOFs) trac-
es a remarkable journey shaped by pioneering scientists from
early structural concepts to advanced functional architectures is
shown in Figure 1. This evolving timeline reflects how visionary
contributions across decades transformed MOFs from laborato-
ry curiosities into powerful materials for modern applications
shown in Figure 2 [1-3]. Metal-organic frameworks (MOFs) rep-
resent a unique class of hybrid porous materials formed by the
coordination of metal ions or clusters with multidentate organic
linkers [1]. Their highly ordered structures, tunable porosity, and
large surface areas provide a versatile platform for a wide range
of applications including gas storage [2], catalysis [3], sensing [4],
and particularly energy storage and conversion [5]. In the context
of next generation energy technologies, MOFs offer an unparal-
leled ability to integrate multiple functionalities such as redox ac-
tivity [6], ion diffusion channels [7], and catalytic centers within a
single framework [8].

Various synthesis methods & derivatives of MOFs are shown in
Figure 3. Recent research has focused on leveraging the structural
and chemical diversity of MOFs to develop advanced electrodes [9]
and catalysts for batteries [10], supercapacitors [11], and fuel cells
[12]. Rational design strategies incorporating metal node selec-
tion [13], organic linker functionalization [14] and post synthetic
modification [15] enable fine tuning of electrochemical properties.
Moreover, the derivatization of MOFs into carbonaceous [16], me-
tallic [17], or composite nanostructures [18] through controlled
pyrolysis or chemical conversion has expanded their applicability,
providing enhanced electrical conductivity and stability suitable
for practical devices.

MOFs in Energy Storage Devices
Batteries (Li-ion, Na-ion, Li-S, and metal-air systems)

In lithium ion and sodium ion batteries, MOF derived materials
exhibit superior cycling stability due to their hierarchical porosi-
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ty and uniform distribution of electroactive species [19]. Study of
MOF Derived FeS/C Nanosheets for High Performance Lithium-Ion
Batteries reports a MOF precursor yielded material with high po-
rosity and uniformly dispersed FeS active sites [20]. The authors
attribute improved Li* transport and charge storage to the large
specific surface area and hierarchical porous structure inherited

from the MOF. This work also demonstrates that the MOF derived
structure addresses electrode pulverization and preserves active
material dispersal over cycles. Analogously, MOF derived NazV,(-
P0,) 3/C and Co-MOF composites [21] have demonstrated stable
Na* intercalation kinetics and improved reversibility, highlighting
MOF adaptability beyond Li based systems.
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Figure 1: Scientist-Centric Timeline lllustrating the Growth of MOF Research.
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Figure 2: Chronological Timeline Highlighting Major Breakthroughs in MOF Chemistry.
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In lithium sulfur batteries, MOFs serve as sulfur hosts, effec-
tively confining polysulfides and mitigating the shuttle effect [22].
MOF-Derived Bifunctional Cog. gsSe/NC Nanoparticles Embedded

in N-Doped Carbon for Lithium-Sulfur Batteries shows MOF de-
rived Coy. gsSe/NC-S host material that maintains high capacities
(1361, 1001 and 810mAh g™* at 0.1,1,3 C) over 400 cycles at 1C
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[23]. MOFs and their derivatives have made substantial contribu-
tions to battery research as both electrode materials and structural
templates. The intrinsic porosity of MOFs facilitates ion transport,
while the presence of redox active sites enables charge storage.
Upon pyrolysis, MOFs yield nanostructured carbon frameworks,
transition metal oxides, sulfides, and phosphides materials that
exhibit high specific capacities and improved rate performance.
MOF Derived NiO-NiCo,0,@PPy Hollow Polyhedron as a Sulfur
Immobilizer for Lithium Sulfur Batteries describes a MOF pre-
cursor converted into a NiO-NiCo,0,@PPy composite as a sulfur
host for Li-S batteries. The hollow polyhedral morphology (from
the MOF template) enhanced electrolyte/electrode contact and
improved rate ability: initial discharge capacity ~ 963mAh g™* (at
0.2C) and good cycling at 1C [24].

Similarly, in metal-air batteries, MOF derived catalysts pro-
mote oxygen reduction and evolution reactions (ORR/OER), en-
hancing round trip efficiency. Facile Synthesis of a MOF Derived
Co-N-C Nanostructure as a Bifunctional Oxygen Electrocatalyst for
Rechargeable Zn-Air Batteries (Luo et al., 2023) describes pyroly-
sis of a Co/Fe/Zn zeolitic imidazolate framework (ZIF) to a Co-N-C
catalyst with E;/, (ORR) ~ 0.854V and significant OER perfor-
mance. In a Zn-air battery the peak power density was ~ 275mW
cm™2 and cycling stability over 180h [25]. Despite these advantag-
es, challenges such as volume expansion, sluggish ion diffusion
in dense frameworks, and structural degradation during cycling
remain to be addressed. Various key properties MOFs Figure 4 &
5 combine high surface area, tunable porosity, and adaptable met-
al-ligand chemistry to enable efficient charge, ion, and molecular
interactions essential for advanced energy applications.
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Figure 3: Synthesis methods & Derivatives of MOF.

Supercapacitors

The high surface area and tunable pore structures of MOFs
make them ideal candidates for supercapacitor electrodes. In
the review by SK Shinde et al. [26], the authors report exam-
ples where a MOF (e.g., HKUST-1) is composited with graphene
(rGO) to overcome poor conductivity of the pure MOF. They cite
a 10 wt% rGO/HKUST-1 composite which achieved a specific ca-
pacitance of ~ 385Fg™" at 1A g™*, whereas pure HKUST-1 showed
only ~ 0.5F g™* [26-29]. This suggests that combining MOFs with
conductive carbonaceous materials (graphene) improves power
density, rapid charge discharge capability via improved electrical
pathways and more effective utilization of the high surface area/
tunable porosity of the MOF. To overcome this, hybrid structures

such as MOF /graphene, MOF /carbon nanotube, and MOF/MXene
composites have been engineered to combine the electrochemical
double layer behavior of carbonaceous materials with the pseudo-
capacitive properties of MOFs leading to improved performance
[27]. Zhu et al. [28] prepared a composite of a conductive MOF
(Ni-HHTP where HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene)
with a MXene nanosheet substrate (Ti3C,Ty) denoted MXene@Ni-
HHTP-x. The optimized composite (MXene@Ni-HHTP-2) achieved
a specific capacitance of ~ 416.6F g™ at 0.5A g™* in an asymmetric
supercapacitor [28]. The MXene based composite further exempli-
fies the synergy between conductive substrates and redox active
MOFs, highlighting the potential for hybridization strategies in
scalable supercapacitor designs. These hybrid electrodes demon-
strate improved power density, rapid charge discharge capability,
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and mechanical robustness over prolonged cycling. Additionally,
strategies such as heteroatom doping (N, S, P) and post synthetic
modification have further enhanced the electrochemical response

by introducing additional redox active sites and improving con-
ductivity pathways.
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Fuel cells and electrocatalysis

MOFs and their derivatives are increasingly vital in electroca-
talysis, serving as precursors for efficient catalysts in ORR, OER,
and HER [30]. The highly dispersed active metal sites and tunable
coordination environments in MOFs facilitate efficient catalytic ac-
tivity. A study on a MOF precursor (a cobalt-based MOF / ZIF struc-
ture) pyrolyzed to yield a Co-N-C nanostructure indicated that this

material exhibited ORR half wave potential (E;/,) of 0.854V (in
0,-saturated 0.1M KOH) which is comparable to commercial Pt/C
catalysts under the same conditions [31]. For OER, the onset and
current density were also good. In a practical Zn-air battery us-
ing this catalyst, the peak power density reached ~ 275mW cm™2
and the cycling stability was > 180h [25]. This demonstrates that
MOF derived M-N-C catalysts can rival Pt in activity while offer-
ing superior cost effectiveness and structural tunability. The work
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highlights the role of high surface area, well dispersed metal sites
(Co in N-doped carbon), and hierarchical porosity (inherited from
the MOF precursor) offering efficient mass transport and elec-
tron transfer [32]. The introduction of heteroatoms and the for-
mation of hierarchical pore structures significantly enhance mass
transport and electron transfer during electrochemical reactions
[33,34]. Achieving long term operational stability and resistance
to corrosion under harsh fuel cell conditions remains a major re-
search focus as the long-term operation under acidic or high tem-
perature fuel cell environments still leads to catalyst degradation
via metal aggregation or carbon corrosion.

MOF derivatives and composite architectures

Controlled thermal or chemical conversion of MOFs enables
the synthesis of a wide variety of functional derivatives, includ-
ing carbon materials, metal oxides, sulfides, phosphides, and sin-
gle atom catalysts. These derivatives inherit the morphological
precision of the parent MOFs, allowing for tunable porosity and
well-dispersed active sites. Integration of MOF derived materials
with conductive supports such as graphene, MXenes, or carbon
nanotubes has proven highly effective in mitigating intrinsic con-
ductivity limitations and enhancing electrochemical performance.

For instance, ZIF-67-derived Co30,@C/graphene hybrids have
exhibited enhanced conductivity and mechanical integrity in Li-
ion anodes [35]. The synergistic effects between the conductive
matrix and electroactive sites yield materials with superior charge
transport, high mechanical strength, and multifunctionality.

Flexible and solid-state energy devices

The development of flexible and solid-state energy devices has
driven new innovations in MOF-based materials. The incorpora-
tion of MOFs and their derivatives into flexible electrodes provides
mechanical resilience [36], foldability, and adaptability for wear-
able electronics. MOF-based solid electrolytes and separators are
also being explored for safer and more compact device architec-
tures. A recent study reported a flexible MOF derived NiCo,0,/
CNF electrode maintaining 90 % capacitance after 5000 cycles
under bending stress. Current research emphasizes enhancing
interfacial compatibility, ionic conductivity [37], and long-term
durability under mechanical stress [38-39]. Such hybridization
strategies are central to achieving practical electrochemical per-
formance benchmarks. Future designs should emphasize integrat-
ing MOF flexibility with scalable fabrication methods, such as 3D
printing. Various applications of MOF are illustrated in Figure 6.
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Theoretical insights and emerging opportunities

Computational approaches, including density functional the-
ory (DFT) and machine learning (ML), are increasingly being uti-
lized to accelerate MOF discovery. DFT helps elucidate electronic
structures, reaction mechanisms, and adsorption behaviors, while
ML enables high throughput screening of vast MOF databases to

predict optimal candidates for specific energy applications [40].
Recent ML frameworks have screened >10,000 MOF structures
for optimized electronic conductivity and stability, accelerating
discovery timelines. Computational and data driven approaches
now complement experimental efforts in understanding structure
property correlations in MOFs.
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In parallel, sustainable synthesis routes using green solvents,
bioderived linkers, and ambient-condition assembly methods are
gaining popularity. Addressing challenges in large-scale produc-
tion, environmental stability, and cost-effectiveness remains cru-

cial for commercial deployment of MOF-based energy materials.
Figure 7 illustrates the key scientific, structural, and practical
challenges that limit the widespread adoption of MOFs in energy
conversion applications.
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Figure 7: Challenges in MOF Adoption for Energy Conversion Applications.
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Bridging the gap between laboratory scale synthesis and com-
mercial device integration remains the foremost challenge. MOFs
and their derivatives have demonstrated remarkable versatility
and potential across diverse next generation energy systems. The
combination of tunable composition, structural precision, and
multifunctionality positions them as strong contenders for future
high performance energy devices. Continued progress in scalable
synthesis, in depth mechanistic understanding, and data-driven
material discovery will be essential to fully realize their potential
in real-world applications. Future research should focus on inte-
grating MOF based materials into practical device architectures
while ensuring environmental sustainability and economic viabil-
ity. Overall, MOF-based materials are poised to drive the evolution
of sustainable, high performance energy technologies through in-
terdisciplinary innovation.
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