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Due to the local atomic arrangements affected by local 
mechanical strain, bonding energy, and electronic and magnetic 
coupling, high entropy alloys exhibit varying degrees of intrinsic 
lattice distortion. Whereas, the lattice distortion accompanies by 
the atomic displacement originated from thermal vibration. In this 
short review, the estimation of lattice distortion is discussed.

In 2004, the novel concept named as high entropy alloys 
(HEAs) or multi-principle alloys was reported [1,2]. The random 
occupation of atomic sites in the crystalline HEAs by these 
elements with different size inevitably results in a severe degree 
of local lattice distortion. Large atoms push away their neighbors 
and small ones have extra space around. None of atoms perfectly 
reside on the ideal lattice sites. The severe lattice distortion 
hypothesis is one of four principles in HEAs [3]. It is known to 
strongly have an effect on the physical properties of single phase 
HEAs, such as increased hardness and decreased electrical and 
thermal conductivity containing electron and lattice contributions 
[4].

In order to quantify the degree of lattice distortion, the atomic 
radius difference (δ) and the atomic displacement away from ideal 
lattice sites (Δd) were defined. Guo et al. [5] combined δ with the 
mixing enthalpy and mixing entropy to discuss the formation of 
single-phase HEAs [5]. Song et al. [6] used the ab initio calculations 
to accurately calculate the Δd at 0 K and found the severe lattice 
distortion of bcc HEAs, compared to fcc HEAs (Figure 1) [6]. In 
experiments, the assessment of lattice distortion was carried out 
using the total scattering method, comparing with the measured 
pair distribution functions (PDFs) [7]. More recently, Tan et al. 
extracted experimentally the averaged atomic pair distance to  

 
estimate the local lattice distortion [8]. Kang et al. [9] calculated 
the Voronoi volume of alloying elements in Cantor’s alloy to 
estimate the local lattice distortion [9].

However, the degree of lattice distortion in HEAs remains 
poorly understood, due to the effect of thermal vibration on the 
measurement of lattice distortion. At finite temperature, the 
lattice distortion is composed of the thermal atomic displacement 
and static atomic displacement. Whereas the suitable techniques 
for probing such information, or the presence of complicating 
factors is lack in the assessment of the data.

To reduce the thermal atomic displacement, one approach is 
how to eliminate the thermal contribution by the measurement 
under cryogenic conditions. For example, some attempts have 
been made to isolate the static component from the thermal 
vibration by reducing the temperature. Okamoto et al. [10] 
attempted to separate the thermal component by reducing the 
temperature to 25 K, measuring the local atomic displacement 
from a series of single crystal samples using synchrotron X-ray 
diffraction (XRD) [10]. The local displacement could solely arise 
from the static component at 25 K. Tan et al. [11] performed 
the variable temperature study using synchrotron XRD down to 
5 K [11]. However, they were unable to isolate the static atomic 
displacement. In other word, it is still unclear if the low temperature 
was sufficient to fully eliminate the thermal contributions to the 
lattice distortion, especially the zero-point vibration induced the 
atomic displacement could not be ignored.

Considering the PDF peak width is a function of both 
the static lattice distortion and dynamic displacements from 
thermal vibration, ones utilized the mean-field representation of 
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interatomic potentials to simulate the thermal vibration induced 
atomic displacement via the full width at half maximum (FWHM) 
of RDF. For example, Jian et al. [12] used the average interatomic 

potentials to estimate the thermal vibration induced atomic 
displacement. They found that the static lattice distortion in 
CoCrNi decreases as the temperature rises [12].

Figure 1: Atomic radius difference δ evaluated with the elemental and 12-coordinated atomic radius differences versus the ab initio 
calculated atomic displacement away from ideal lattice sites Δd for bcc HfNbZr, HfNbTiZr, HfNbTaTiZr, NbTiV, and AlNbTiV and for fcc 
CoFeNi, CoCrFeNi, and CoCrFeMnNi, the copy figure from Ref. [6].

Another way is to determine the equation as a function of 
temperature. The thermal vibration induced isotropic atomic 
displacement parameter is often calculated by using the harmonic 
Debye or Einstein model. The thermal atomic displacement 
nonlinearly increases as temperature rises. It has been proved to be 
valid for thermal atomic displacement in the disordered clathrate 
compounds [13]. Using the molecular dynamics, we simulated 
the variation of total atomic displacement with temperature 
in fcc Co-Fe-Ni-Ti HEAs [14]. Results suggest that the lattice 
distortion becomes more severe with increasing temperature. 
In experiments, the variation in peak intensity as a function of 
angle was used to measure the Debye–Waller factor and estimate 
the thermal atomic displacement. Via the comparison of pure Ni, 
CoCrNi and CoCrFeMnNi HEAs, the effect instrument component 
is eliminated, results show CoCrFeMnNi has more severe lattice 
distortion than NiCoCr, whereas the lattice distortion in two HEAs 
keeps a constant at range of T=4.2-291K [15].

In short, the positional and dynamical behavior of HEAs is 
complex. Further study is required for the accurate description of 
lattice distortion.
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