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Abstract

Stray light is one of the factors impacting the performance of optical imaging devices in terms of sensitivity and resolution. The off-axis
parasitic radiations can be strongly minimized using complex baffles with black coated inner walls. The state-of-the-art developments place the
carbon-containing black coatings as materials of choice. The potential of the randomly oriented carbon nanotube coatings, made by a single pot
chemical vapor deposition process is highlighted in this contribution
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Introduction

Optical imaging implements electromagnetic radiation
(X-rays to sub-millimeter) to deliver valuable data for various
applications including medical diagnostic, materials and
devices characterization, chemical reaction monitoring, earth
observation and astrometry. Enormous efforts are therefore
devoted to the further improvement of its resolution and
sensitivity. The parasitic background signal in optical imaging is
related to stray light in the opto-mechanical systems. This stray
light is due to numerous sources such as bright objects near the
line of sight, thermal radiation, contaminated optical surfaces
and reflection on the inner walls of the baffles. These issues are
further emphasized for space applications.

In the field of astrometry a loss of 40% of the accuracy can
be induced by stray light at the magnitude of 20 (4 10^5 times
fainter than can be seen with naked eye) as it was speculated for
the Gaia telescope [1,2]. Lofdahl [3] investigated the stray light in
ground-based solar telescopes using accurate photometry. The
stray light in such instruments produces an aureole that extends
several solar radii off the solar disk. Authors measured little
percent noise intensity and a reduced contrast.


Optical payloads implement, in general, highly
sophisticated baffles/vanes systems and black surface
finishing blocking and attenuating the scattered light, and
thereby limiting the deterioration of the geometric and/
or radiometric image quality. In this context several black
surface finishing processes are commercially available
such as these based on black anodization Table 1 (Martin
Black), black paints (e.g. Aeroglaze, Ames 24E, DeSoto…),
plasma spraying (e.g. J-Black developed for infrared astronomy
[4]) and electro deposition. These processes, feature clear
limitations when the structures to be coated arecomplex and do
present thin walls or sharp edges. 



Table 1:   Summary of some commercially existing black surface
finishing.
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Recently other black surface finishing treatments have been
introduced into the market, including the Acktar advanced
coatings based on a Physical Vapor Deposition process, [5]
and Surrey nano systems, which is based on photo-thermally
activated chemical vapor deposition of vertically aligned carbon
nanotube (VA-CNT) [6]. Both are per see line-of-sign processes
with limited implementation on complex three-dimensional
structures. The thermal chemical vapor deposition, which is
not a line-of-sight process, was implemented by Nasa's Goddard
Space Flight Center for the growth of VA-CNT [7,8]. In this
process however, the substrate temperature exceeds 700 °C,
which is an issue for many materials such as aluminum and some
special alloys. Furthermore, VA-CNT can be turned to optically
reflective mirror via mechanical contact [9,10]. Therefore, the
development of innovative super black coating material was
identified as a milestone by the European Space Agency [11].

On-going developments

Based on the measured transmission and reflection spectra,
the calculated impedance of the CNT coatings matches to the
surrounding air, resulting on near perfect absorption [12].
Nevertheless, attaining sufficient adhesion requires embedding
these CNTs ina structural matrix, which inherently decrease their
light absorption. [13] reported on the application, via a costeffective
spray Bera et al. deposition technique, of CNT-boehmite
(AlOOH) composite coatings that feature an absorption of
97.5% and withstand adhesion scotch tape test. Similar optical
performance was reported in the best cases with CNT-binder
composite coatings obtained using the same process [14]. The
implementation of spray technique is appropriate for coatings
on three-dimensional structures with limited complexity.

Thermal chemical vapor deposition process was investigated
to enable the growth of CNTs at low temperatures [15,16]. Hereby
an innovative catalyst-promoter concept was implemented to
grow CNTs at =330 °C starting from ethanol vapor as a carbon
source. While the catalyst is either cobalt or nickel, the promoter
is selected among highly basic oxide materials such as MgO. Single
step process enables the growth of CNTs on various substrates
including on aluminum, titanium and glass. The growth yields
randomly oriented CNTs which makes the optical properties less
sensitive to mechanical contacts.

The reflection of UV-Visible-near infrared radiations
decreases dramatically with the film thickness to reach a
plateau at 0.7% for thicknesses above 3m as shown in Figure
1. Strengthening the randomly oriented CNT coatings could be
performed in the same deposition chamber by Al2O3, using the
sequential and surface limited reaction of trimethylaluminum
with water vapor. Adhesion tape test could be satisfied while
keeping the value of the integrated THR near 1%. Figure 2
displays the surface and cross section of a strengthened CNT
coating with a thin Al2O3 layer. The morphology of the film
retains a significant porosity owing to the conformal nature of
the Al2O3 deposition.
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Figure 1:   Evolution of the integrated total hemispherical
reflection (THR) in the UV-Vis-NIR (300-2300nm) as a function
of the thickness of the randomly oriented CNT coating. The
measurements were done at an incidence angle of 8°.

 

Discussion and Conclusion
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Figure 2:    Scanning Electron micrographs of the surface (left) and cross-section (right) of the Al2
O3-CNT nano composite coatings.

 


The most relevant weakness of the VA-CNT coating is
the sensitivity to mechanical and chemical aggression as the
CNTs bend easily and are directly exposed to the surrounding
atmosphere. It is worth mentioning that the exposure of the
black coatings to atomic oxygen is expected for applications in
low Earth orbit. While the growth of randomly oriented CNT
makes the films less sensitive to mechanical aggressions, the
presence of an oxide covering layer decreases their sensitivity
to reactive gases. The chemical nature and the thickness of the
oxide layer can be adjusted to ensure a compromise between the
absorption, mechanical and chemical stabilities. 


Table 2:    Schematic presentation of the CNT-based super black coatings. .
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The random orientation of the CNTs is furthermore beneficial
as the optical response is not angle-dependent. The necessary
thickness to achieve an appropriate absorption of light ranges
from few micrometers, for the randomly oriented CNTs to
few tens of micrometers for the aligned CNTs. Therefore, the
randomly oriented CNT coating is likely more compatible with
coatings on sharp edges. The main characteristics of the CNTbased
super black coatings, Table 2, show a clear advantage of
the strengthened randomly oriented CNT coating.
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