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Abstract

Methanolic extracts of Helichrysum stoechas (L.) Moench cell suspensions were analyzed by LC-ESI-QTOF, which highlighted the predominance 
of 3,5-O-dicaffeoylquinic acid (3,5-diCQA). Elicitation of H. stoechas cells with methyl jasmonate (200 µM) led to a massive rise in 3,5-diCQA, up 
to 5-fold-increase compared with control, reaching the concentration of 10.2 mg.g-1 dry weight after 14 days of culture. Previous data showed 
that diCQA isomers are potent allelopathic compounds, thus the methanolic extracts of control and MeJa-elicited H. stoechas cells were tested 
for their phytotoxicity. With this in mind, activity on the seed germination and seedling growth of the model plant Lepidium sativum were tested. 
Phytotoxicity of both extracts occurred in a dose-dependent manner, with a greater activity of elicited cells extract. Indeed, in the concentration 
range from 0.31 to 0.83 mg.mL-1, the latter showed a significantly higher inhibition rate of L. sativum seedlings root growth, when compared to 
control cells extract. The data presented may contribute to explore new strategies towards the conception of bioherbicides from plant origin. To 
our knowledge, this study is the first report of the use of elicited plant cells grown in vitro as a raw material for the production of allelopathic 
metabolites.
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Introduction 

Helichrysum stoechas (L.) Moench (Asteraceae), also called 
« immortelle » or « everlasting flower », is a common shrub in 
western and southern coastal vegetation in France, as well as 
in several countries of the Mediterranean area. In contrast to 
Helichrysum italicum, which has been extensively studied [1], only 
a few studies were conducted on H. stoechas [2]. They showed 
interesting biological activities of methanolic extracts from 
flowering aerial parts towards cosmetic [3] and pharmaceutical 
[4] applications, as well as in the food industry because of its 
antimicrobial potential and strong antioxidant capacity [5-7]. 
Recent data showed that powder or extract of H. stoechas had 
antifungal activity against plant pathogenic fungus Sclerotinia 
sclerotiurum, opening new perspectives in the field of agro ecology 
[8]. All these reports established a link between H. stoechas 
biological activity and its high phenolic content. The research of 

plant-based weeds biocontrol products (botanical bioherbicides) 
is gaining an increasing interest as an emerging method for weed 
control in sustainable agriculture, instead of using chemicals with 
negative environmental impact [9-11]. The capacity of one plant 
to inhibit germination and/or growth of other plants is defined 
as allelopathy and is based on the production of phytotoxic 
metabolites (allelochemicals) by the emitting plant. Based on 
the fact that H. stoechas is rich in phenolic compounds, which are 
crucial molecules in allelopathic activity [12,13], the phytotoxic 
activity of H. stoechas methanolic extracts was investigated to test 
its potential as source of allelochemicals. 

Moreover, previous studies showed that the main phenolic 
acid in H. stoechas aerial parts is 3,5-O-dicaffeoylquinic acid 
[3,14]. Allelopathic effects of caffeic acid derivatives, including 
dicaffeoylquinic acids (diCQA), were already demonstrated in 
Bellis perennis [15], in Chrysanthemum coronarium [16] and 
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in the invasive plant Tithonia diversifolia [17,18], highlighting 
the relevance of studying H. stoechas as a source of allelopathic 
metabolites. This link between allelopathic and medicinal 
potential of plants has already been explored: 239 medicinal plant 
species were tested for their allelopathic activities [19]. In another 
study, the effects of juglone, a naphtoquinone characterized as 
the main allelochemical from species of genus Juglans L. [20], 
was evaluated as an effective anticancer agent in pancreatic 
cancer [21]. These reports give a new insight on plant resources, 
disclosing their multifunctional potential. However, plants grown 
in field are submitted to seasonal and climatic fluctuations, 
inducing metabolic variations [22-24] unsuitable with industrial 
valorization, which needs standardized plant raw material. Thus, 
production of biomolecules by plant cell cultures – considered as 
plant cell factories - appears as a powerful alternative strategy, 
allowing a stable plant sourcing, as well as the opportunity of 
using elicitors to increase the content in bioactive molecules, and 
is largely documented [25-30].

Therefore, our first aim was to establish H. stoechas cell 
suspensions, to avoid the problem of metabolic variability and 
plant sourcing, this species being protected in several French 
regions such as Brittany, Center and the Alps, and allelopathy 
was investigated directly in this renewable raw material from 
biotechnological origin. Moreover, we tested two hormonal 
elicitors - methyl jasmonate (MeJa) and salicylic acid (SA) - 
on H. stoechas cell suspensions for their potential capacity of 
increasing dicaffeoylquinic acids content (3,5-O-dicaffeoylquinic 
acid and its isomers 3,4- and 4.5-O-dicaffeoylquinic acids), with 
an expected enhanced allelopathic activity of H. stoechas elicited 
cells extracts. Indeed, it was already shown that MeJa and/or SA 
induced important increase of phenolics concentration in in vitro 
cultures of Salvia virgate [31], Scutellaria lateriflora [32], and 
Salvia miltiorrhiza [33]. Thus, allelopathic studies were performed 
with methanolic extracts of non-elicited and elicited H. stoechas 
cells, further tested for their effect on the model plant Lepidium 
sativum germination and growth, in order to explore the interest 
of a biotechnological plant approach for the research of weeds 
biocontrol new products.

Materials and Methods

Plant material

The protocol for callogenesis of H. stoechas was adapted from 
[34]. Leaves were washed during 3 min in ethanol 80% with 0.1% 
Tween 20 (polyethylene glycol sorbitan monolaureate), then 
sterilized during 3 min in 1% sodium hypochlorite and finally 
rinsed in sterile water. Explants were incubated on medium 
containing minerals and vitamins (25 g.L-1 KNO3 ; 1.34 g.L-1 
(NH4)2SO4 ; 1.5 g.L-1 CaCl2, 2H2O ; 1.32 g.L-1 NaH2PO4, H2O ; 2.5 g.L-

1 MgSO4, 7H2O ; 169 mg.L-1 MnSO4, H2O ; 86 mg.L-1 ZnSO4, 7H2O ; 
62 mg.L-1 H3BO3 ; 8.3 mg.L-1 KI ; 2.5 mg.L-1 Na2MoO4, 2H2O ; 0.25 
mg.L-1 CuSO4, 5H2O ; 278 mg.L-1 FeSO4, 7H2O ; 373 mg.L-1 Na2EDTA, 
2H2O ; 0.1 mg.L-1 biotine ; 1 g.L-1 myo-inositol ; 10 mg.L-1 nicotinic 

acid ; 10 mg.L-1 D-pantothenic acid, hemicalcium salt; 10 mg.L-1 
hydrochloride pyridoxine; 10 mg.L-1 hydrochloride thiamine), 
supplemented with 30 g.L-1 sucrose, 1 mg.L-1 α-naphthaleneacetic 
acid (NAA), 1 mg.L-1 2,4-dichlorophenoxyacetic acid (2.4D), 1  
mg.L-1 6-benzyladenine (BA). The pH was adjusted to 5.8 and media 
were solidified by 1% (w/v) agar before autoclaving for 15 min at 
121°C. To establish cell suspension, 1 g of 1 month-old friable calli 
was transferred in 250 mL Erlenmeyer flask containing 100 mL of 
medium. The medium for suspension was the same as the medium 
for callogenesis without agar. Suspensions were put on a rotary 
shaker at 130 rpm, 20 mm range. For further subcultures, every 
14 days, dilution was performed (1:4, v/v), in 250 mL Erlenmeyer 
flasks containing 100 mL of liquid medium. Cultures were kept in 
culture room at 25°C, under continuous light intensity (PPFD: 50 
µmol.m-2. s-1).

Elicitation

Elicitation assays were performed in three independent 
experiments and in triplicates for each of them.

3-days old suspensions were treated with various 
concentrations of elicitors, and cells were harvested after 
14 days of culture. Methyl jasmonate (746398, Sigma, Saint-
Quentin-Fallavier, France) or salicylic acid (S1367.0100, Duchefa 
Biochemie, Haarlem, Netherlands) was added at 50, 100, 200 and 
400 µM or 100, 150, and 200 µM, respectively. The elicitors were 
sterilized thanks to filtration on sterile 0.22 µm membrane filter. 
Because elicitors were dissolved in ethanol, the same volume of 
solvent was added to the control suspension to reveal any adverse 
effect.

Growth measurements

The growth measurements were performed on 14 days old 
suspensions, by measuring the fresh weight of cells in the pellet 
after 10 min centrifugation (4000 rpm), then by measuring the 
dry weight after freeze-drying of cells.

 Preparation of cell extracts

12.5 mL of methanol HPLC grade (Sigma, Saint-Quentin-
Fallavier, France) were added to 500 mg of freeze-dried cells. 
The mixture was vortexed at 30000 rpm during 30 s. Then, 
samples were sonicated during 25 min (Fischer Scientific, Illkirch, 
France). Before being centrifuged (9000 rpm, 15 min, 20°C). The 
supernatants obtained were passed through a 0.2 μm membrane 
filter and injected in HPLC.

Determination of dicaffeoylquinic acids content

Identification of diCQAs: The liquid chromatography system 
was an Ultimate 3000 RSLC model (Dionex, Sunnyval, Californie, 
USA) with a binary pump, thermostatic column oven, automatic 
sample changer and DAD detector. The stationary phase was a 
kinetex C18 column (2,6 mm, 100 Å, 100 x 3 mm) (Phenomenex, 
Torrence, USA). The mobile phases were acetonitrile (solvent A) 
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and water (solvent B), both with 0.05 % formic acid. The flow 
rate was 0.7 mL/min. The gradient used was: 0 – 5 min, A: 10%; 
10min, A: 20%; 15min, A: 30%; 20 to 25 min, A: 100%. The mass 
spectrometry detector was a maXis Q-TOF (Bruker, Billerika, 
Massachusetts, USA). The softwares used were Hyster for the data 
acquisition and Data Analysis for the data processing (Bruker, 
Billerika, Massachusetts, USA). Pressure of the nebulization gas 
(nitrogen) was 1.2 bar. Nitrogen was also used as collision gas. 
Electrospray was at -4.5 kV, in negative mode. Mass spectra were 
recorded with a frequency of 1 Hz and extending over a range 
from 50 to 2500 m/z. The BPC (Base Peak Chromatogram) was 
used for the data processing. Major phenolic compounds of extract 
of control cell suspension were characterized thanks to their UV, 
MS and MS/MS spectra, in comparison with literature and the 
standard injection purchased at Biopurify Phytochemical Ltd 
(Chengdu, China).

Quantification of diCQA: The content in dicaffeoylquinic acid 
isomers was measured by HPLC-DAD. The apparatus was a 1260 
model (Agilent, Santa Clara, Californie, USA) with a quaternary 
pump and diode array detector. The stationary phase was a kinetex 
C18 column (2,6 22 mm, 100 A, 100 mm x 3 mm) (Phenomenex, 
Torrence, USA). HPLC software was OpenLab, and the data were 
processed on ACDLabs. The mobile phases were acetonitrile 
(solvent A) and water (solvent B), both with 0.05 % formic acid. 
The flow rate was 0.7 mL.min-1. The gradient used was: 0 -5 min, 
A: 10%; 7 min, A: 20%; 12min, A: 30%; 17-20 min, A: 100%. 
Injection volume was 1 µL. Peaks were monitored at 320 nm which 
is one of the lambda maxes of interest compounds. The content of 
each diCQA isomer was calculated thanks to an equation which 
was obtained from corresponding standards calibration curves. 
For each isomer, stock solutions were prepared at 1 mg.mL-1 in 
methanol and diluted to the appropriate concentration range for 
making calibration curves.

Germination bioassay: For the study of allelopathic effects, 
500 µL of H. stoechas control and elicited (with MeJa 200 µM) 
cells methanolic extracts (10 mg. mL-1) or increasing dilutions (4x, 
6x, 8x, 12x, 16x, 32x and 64x in methanol, leading respectively to 
the following concentrations: 2.5, 1.67, 1.25, 0.83, 0.62, 0.31 and 
0.16 mg extract. mL-1) were added to Whatman paper (n°1) in 5.5 
cm diameter Petri dishes. After evaporation of methanol, 1.5 mL 
of a 0.05% (v/v) aqueous solution of polyoxyethylene sorbitan 
monolaurate (Tween 20) were added, and 20 seeds of garden 
cress (Lepidium sativum -Botanic®) were placed on the paper and 
incubated at 25°C under dark conditions. Control was performed 
with 500 µL methanol. After 2 days, the germination percentage 
of seeds, as well as the length of the radicle and hypocotyl, were 
measured. Each test was performed in duplicate (n=40) for each 
of three independent experiments. The growth inhibition rate was 
defined as 100-(Treatment x 100/Control).

Statistical analysis: Three batches were produced to assess 
root and hypocotyl growth at germination under four treatments: 
control, methanol, extract of non-elicited and methyl-jasmonate 

elicited H. stoechas cells. Various dilution levels were used for 
the cells extracts, i.e., 4x, 6x, 8x, 12x, 16x, 32x and 64x. The root 
and hypocotyl lengths were measured 48h post-sowing. Root and 
hypocotyl lengths for each batch were standardized by subtracting 
their batch average and dividing the difference by their batch 
standard deviation. The “batch” effect was therefore corrected, 
which allowed a fair comparison between the three batches. The 
variance analysis of the “treatment” and “dilution” factors was 
assessed with an ANOVA. The means were further compared using 
Tukey’s test (R software).

Results and Discussion

Methanolic extracts of control and elicited H. stoechas cells 
were first characterized for their diCQA content, before analysis 
of their allelopathic potential towards garden cress (Lepidium 
sativum), a model plant for allelopathy studies, by germination 
and growth measurements.

Identification of major compounds by LC-ESI-QTOF 
dereplication

Identification of the diCQA isomers, which were the major 
compounds, was done by comparison of the retention time and 
UV, MS and MS/MS spectra with those of standards. LC-ESI-QTOF 
analysis showed the presence of three isomers of diCQA: 3,4-, 3,5- 
and 4,5-diCQA (Figure 1). Retention time, UV and mass spectra 
were the same as the standards (Table 1). The diCQA quantities 
for 1g of dry cells are 2.4x103µg, 446 µg and 277 µg for 3,5- , 3,4- 
and 4,5-diCQA respectively (Figure 2b). Thus, most abundant 
diCQA in H. stoechas cells is 3,5-diCQA, representing around 80% 
of total diCQA, while 3,4- and 4,5-diCQA are in minority (12% and 
8% of total diCQA respectively) (Figure 2b). These results are in 
accordance with those already published [3,14]: 3,5-diCQA was 
also the most abundant phenolic acid in a methanolic extract of 
H. stoechas aerial parts. Thus 3,5-diCQA can be considered as 
a marker of H. stoechas, regardless the nature of raw material 
(plants or undifferentiated cells). 3,5-diCQA is also the main 
compound in aerial parts of H. obconicum [35] and was the most 
anti-HIV active metabolite in H. populifolium aerial parts [36]; it 
was also detected in plants of this species propagated in vitro [37]. 
Presence of 3,5-diCQA was reported in flowers of H. italicum [38]. 
Tithonia diversifolia, another Asteraceae, was also characterized 
by a high dicaffeoylquinic acids content in a report focused on 
the research of metabolites responsible for antifungal as well as 
insecticide properties of this invasive plant [18]. 3,5-DiCQA was 
also detected in Salicornia herbacea (Amaranthaceae) extracts 
with strong antioxidant activity [39], as well as in artichoke cell 
cultures submitted to nutrient deficiency [40], and in elicited 
tobacco cells [41], revealing the key role of this metabolite for 
plant defense and adaptation mechanisms.

Effect of elicitors on H. stoechas cell suspensions growth

The elicitation during 11 days with MeJa or SA did not affect 
the growth of H. stoechas cells at any of the tested concentrations 
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(Figure 2a). At the end of the culture cycle (14 days), each 
population showed approximately a 4-fold increase of the fresh 
weight when compared to the inoculum value, to reach a maximum 
of 450 g.L-1 at the end of the culture cycle. The dry weight was 
also similar in control and elicited cells (around 15 g.L-1 at the 
end of the 14-days culture cycle). These growth parameters are 

in accordance with those reported recently for other plant cell 
suspensions as Armeria maritima [42], Thevetia peruviana [43, 
44], Halodule pinifolia [45]. Thus, concentrations of elicitors (MeJa 
and SA) used in our study did not show any phytotoxic effects on 
H. stoechas cells and were therefore suitable for further diCQA bio-
production studies.

Figure 1: Structure of the markers dicaffeoylquinic acids (diCQAs) identified in Helichrysum stoechas cells methanolic extract.
Quinic acid : R1=R2=R3=R4=H

                                                                                                         (a)

                                                                                                         (b)

Figure 2: Effect of methyl jasmonate and salicylic acid on growth (a) and diCQA content (b) of H. stoechas cell suspensions after a 14-day 
culture cycle.

http://dx.doi.org/10.19080/JOJHA.2022.03.555613


How to cite this article:  Gourguillon L, Rustenholz C, Le Gélébart E, Lobstein A, Gondet L. Methyl Jasmonate Elicited Helichrysum Stoechas (L.) Moench 
Cell Suspensions, a Promising Source of Extracts with Allelopathic Activity?. JOJ Hortic Arboric. 2022; 3(3): 555613. DOI:  10.19080/JOJHA.2022.03.555613005

JOJ Horticulture & Arboriculture 

Effect of elicitor on dicaffeoylquinic acids concentration in H. 
stoechas cells

Our results showed that H. stoechas cells accumulate higher 
levels of diCQA in response to MeJa elicitation. When cell 
suspensions are elicited with 200 µM MeJA, 3,5-diCQA content 
reached 10.2 x 103 µg. g-1 DW which is 5-fold superior compared 
with non-elicited cells after a 14-days culture cycle. However, 
SA elicitation did not show any effect on diCQA content (Figure 
2b). This different effect of MeJa and SA was already described 

for elicitation of secondary metabolites in Rehmannia glutinosa 
hairy roots [46], as well as in Thevetia peruviana cell suspensions 
[44]. In other reports, a synergistic effect between SA and MeJA 
on plant secondary metabolism was shown [47]. The cross talk 
between the SA and jasmonate metabolism is complex, either 
displaying antagonism or synergism pattern [48]. In both cases, 
activation of phenylalanine ammonia-lyase (PAL) gene expression 
plays a pivotal role in the capacity of elicitors to activate the 
phenylpropanoid pathway [49, 50].

Table 1: Compounds identified in Helichrysum stoechas (Hs) cells methanolic extract by LC-ESI-QTOF dereplication.

Retention  
time (min) M-H- m/z Fragments (m/z) ƛmax (nm) Compounds 

identified

10,63

515,1191

353,0883 [M-H-caffeic acid]-

220 - 239 - 326

3,4-diCQA

10,99 191,0559 [quinic acid]- 3,5-diCQA

11,86 179,0352 [caffeic acid]- 4,5-diCQA

The stimulating effect of MeJa on bioactive metabolites 
production in Helichrysum spp. was already described in cells of H. 
kraussii [51], and in in vitro propagated shoots of H. populifolium 
[37]. Other studies reported a phenolics bioproduction capacity in 
H. pedunculatum callus culture [52] in the absence of any elicitor 
treatment. The original aspect of the present work is that for 
the first time an elicitor-enhanced metabolites production in H. 
stoechas is reported. Additional studies should be carried out with 

H. stoechas cells with the aim of increasing even more their diCQA 
content, for example by supporting MeJa elicitation with precursor 
feeding [53], or by testing other elicitors such as chitosan, which 
is frequently used in activating phenolic metabolism in plant cell 
suspensions [50, 54, 55]. Thus, extracts from the cells elicited with 
200 µM MeJa, with the highest diCQA content, were chosen for 
further investigations concerning H. stoechas allelopathic activity.

Allelopathic activity of H. stoechas cells methanolic extracts

Figure 3: Lepidium sativum seedlings two days after sowing on increasing concentrations of non-elicited H. stoechas cells methanolic 
extract. Bar = 1 cm.
Seedlings represented above have the growth parameters (hypocotyl and root length) corresponding to the mean of the population (data 
shown in Table 2).

Two days after sowing, no significant effect on the germination 
rate of L. sativum was noticed, reaching in all cases 90 to 100% 
(data not shown). However, the cress seedlings grown on non-
elicited H. stoechas extract concentrations of 0.16 mg.mL-1 and 
above showed a progressive inhibition of root and hypocotyl 

growth when compared to the control (Figure 3). The growth 
inhibition rate reached 78.2% for roots and 57.6% for hypocotyls 
when the most concentrated extract (2.5 mg.mL-1) was tested 
(Table 2). Our results showed for the first time that H. stoechas 
cells methanolic extract possess a great allelopathic potential. The 
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IC50 values determined from data shown in Table 2 indicate that 
H. stoechas cells extract affected root growth (IC50 = 1 mg.mL-1) 
more than shoot growth (IC50 = 1.65 mg.mL-1) of cress seedlings. 
Moreover, comparison of cress root growth inhibition obtained 
with other plant extracts tested in the same conditions showed 
that H. stoechas cells extract is a really promising candidate for 
developing a plant-based bioherbicide. Indeed, the IC50 values 
on cress root growth of methanolic extract of Actinidoa deliciosa 
(21.6 mg.mL-1 [56]), Gleichenia japonica (10-30 mg.mL-1 [57]), 
Pistia stratiotes (16.9 mg.mL-1 [58]) and Lemna minor (8.9 mg. 
mL-1 [58]) were all much higher when compared with IC50 value 

determined for H. stoechas extract. When this experiment was 
repeated with MeJa-elicited H. stoechas cells extract, the growth 
inhibition rate reached 80.2% for roots and 57.5% for hypocotyls 
for the most concentrated extract (2.5 mg.mL-1), which was 
similar to phytotoxic effects of non-elicited cells extracts (Table 2). 
However, a stimulating effect of elicitation on phytotoxic activity 
on cress root growth was observable for extract concentrations in 
the range from 0.31 to 0.83 mg.mL-1 (Table 2, values in bold), with 
an inhibition rate being for each extract concentration 8% greater 
with MeJa-elicited than with non-elicited cells extracts. 

Table 2: Inhibition effects of Helichrysum stoechas (Hs) cells extracts (non-elicited and elicited with MeJa 200 μM) on Lepidium sativum seedlings 
growth.

Extract concentration Lepidium sativum seedling height2 (mm) Inhibition rate3 (%)

(mg.mL-1 )1 Root Stats R4 Hypocotyl Stats H4 Root Hypocotyl

Control (Methanol) 20.0 ± 5.2 a 9.2 ± 2.9 a - -

Non-elicited Hs cells       

0.16 17.9 ± 5.3 b 9.4 ± 2.6 a 10.4 -1.9

0.31 15.7 ± 3.2 c 7.4 ± 2.4 b 21.5 20.3

0.62 12.9 ± 2.7 d 6.9 ± 2.1 bc 35.4 24.9

0.83 11.4 ± 2.8 e 6.4 ± 2.1 cd 42.8 30.3

1.25 7.9 ± 2.4 g 5.2 ± 1.9 e 60.2 43.4

1.67 6.9 ± 2.5 gh 5.1 ± 1.7 e 65.6 44.8

2.5 4.4 ± 1.7 ij 3.9 ± 1.3 f 78.2 57.6

    IC50 (mg.mL-1): 1 1.65

MeJa-elicited Hs cells       

0.16 17.5 ± 4.8 b 9.2 ± 2.7 a 12.3 0.7

0.31 14.1 ± 4.0 de 8.0 ± 2.4 a 29.5 13

0.62 11.3 ± 2.9 e 6.8 ± 1.9 bc 43.4 26

0.83 9.9 ± 2.7 f 6.3 ± 1.8 cd 50.6 31.7

1.25 7.6 ± 2.5 g 5.5 ± 1.7 de 61.7 40.2

1.67 5.8 ± 2.0 hi 5.2 ± 1.7 e 71.2 43.3

2.5 4 ± 1.3 j 3.9 ± 1.3 f 80 .2 57.5

IC50 (mg.mL-1): 0.84 2.1

The values of Lepidium sativum seedlings root and hypocotyl height are mean ±SE. Three independent batches were measured and statistically 
analyzed4. Values in bold are statistically different in non-elicited and MeJa-elicited cells extracts.

1: the different extract concentrations were obtained after successive dilutions (respectively 1/64, 1/32, 1/16, 1/12, 1/8, 1/6 and 1/4) from the crude 
extract (10 mg.mL-1)

2: measured 48h after sowing with 500 μl of control and elicited H. stoechas cells methanolic extract

3: inhibition rate (%) = 100-(Treatment x 100/Control)

4: Root (R) and hypocotyl (H) lengths for each batch were standardized by subtracting their batch average and dividing the difference by their 
batch standard deviation. The “batch” effect was therefore corrected, which allowed a fair comparison between the three batches. The analysis of 
variance of the “treatment” and “dilution” factors was assessed with an ANOVA. The means were further compared using Tukey’s test (R software). 

Seedling height data followed by the same letters are not significantly different at the level of 5%.
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The comparison of the IC50 values of MeJa-elicited H. stoechas 
cells extract on cress root growth (0.84 mg.mL-1) with the one 
obtained with non-elicited H. stoechas cells (1 mg.mL-1) revealed 
a significant increase of its phytotoxic activity, as a consequence 
of the MeJa treatment. Elicitation with MeJa thus appears to be a 
potent mean for ensuring a gearing effect on allelopathic activity 
of in vitro cultured H. stoechas cells. A few studies described 
recently the interest of biotechnological plant raw material 
for crop protection in an agro-ecological context. For example, 
extracts of callus and cell suspension cultures of Eysenhardtia 
polystachya showed inhibition of phytopathogenic fungi mycelial 
growth [59]. Extracts of Lantana camara callus were investigated 
for their phytotoxic effects by inhibiting germination and seedlings 
growth of Brassica campestris, Ipomoea aquatica, Sorghum bicolor 
L. and Zea mays L. [60]. Hairy roots of Chenopodium murale could 
also constitute a promising natural resource in the management 
of weeds [61]. The first report of allelopathic effects of in vitro 
cultures described an experiment where soybean (Glycine max 
Merr.) calli were co-cultured with rice (Oryza sativa L.) calli, with 
an allelopathic evidence of growth inhibition on soybean calli, 
due to volatile compounds produced by rice calli [62]. To our 
knowledge, data shown in the present work represents the first 
description of a complementarity between elicitation, generally 
used for enhancing the production of bioactive metabolites in 
plant cultures for medical or cosmetic applications, and the 
allelopathic potential of plant cell suspensions, a new promising 
source of allelochemicals for bioherbicide development.

Conclusion

Methanolic extracts of H. stoechas cell suspensions represent 
an interesting line of research for the possible detection of weeds 
biocontrol products, their 3,5-diCQA content being correlated 
with their phytotoxic activity, measured herein by cress seedlings 
growth inhibition. Moreover, elicitation of these cells with MeJa 
led to a slight but significant enhancement of their phytotoxic 
activity and consequently of their allelopathic potential. These 
results put a new insight on the pivotal role of diCQA isomers in the 
adaptation of plants towards their environment. Moreover, they 
contribute to the optimization of plant biotechnology methods as 
a tool for future investigations towards the development of plant-
based bioherbicides.
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