Machine Learning Methods in Early Diagnosis of Coronary Artery Disease

Luxmi Verma1*, Sangeet Srivastava2 and Varun Sapra3

1Uttaranchal University, India
2The NorthCap University, India
3University of Petroleum and Energy Studies, India

Submission: April 24, 2018; Published: May 30, 2018

*Corresponding author: Luxmi Verma, Uttaranchal University, Dehradun, India, Email: luxmi.verma@gmail.com

Abstract

With the advancement in information technology in health care sector, the medical hospitals are generating a huge volume of data including patient’s details, medications, ECG etc. It was required to understand this large collection of data and deduce the meaningful patterns out of it. In the recent past, Data mining methods proved best for finding the hidden patterns out of the large data. These methods have been applied by researchers to transmute data into knowledge. One of the most life threatening disease worldwide is Coronary artery disease. It is one of the lifestyle diseases where cost of detection and treatment is high. One of the gold standards for diagnosis of disease is coronary angiography which is invasive method and requires high end tests with a lot of technical expertise. So many researchers are seeking intelligent computation methods for disease detection. This review gives the insight of how computational methods are used in detection of Coronary Artery Disease.

Keywords: Coronary artery disease; Coronary angiography; Data mining

Abbreviations: CVD: Cardiovascular Diseases; CAD: Coronary Artery Disease; DM: Data Mining

Introduction

Health care sector is one of the most concerned sector for any country. One of the major chunk of the government budget is allocated for the research and advancement in this sector. At the same time information technology is the other booming sector and playing a support system to all major sectors specially the healthcare. With this advent, the health sector is producing complex medical data about patients including inter alia, clinical parameters, hospital resources, medical devices, disease diagnosis and patients’ records. If this voluminous data is processed and understood properly, then it can assist medical practitioners to take better and early decisions regarding the disease. CAD needs to be detected early to avoid the risk of being exaggerated further. Many machine learning methods have been applied successfully by researchers to discover new and interesting patterns and detection of CAD. One of the prime features of machine learning is its capacity to construct models that are capable of generating knowledge, predicting the new unseen cases and produce patterns based on the learning from historical data. Some of the major application areas where machine learning algorithms made a mark are insurance frauds detection [1,2], infection control surveillance [3-6], disease diagnostic [7,8], treatment effectiveness and healthcare management [9-11].

CVD are becoming common with changing life styles across the world. They majorly happen due to various disorders of blood and heart vessels, and are foremost causes of disability and death [12,13]. With the availability of the clinical data of probable and potential patients, it becomes imperative to find suitable models to detect these diseases both economically and accurately. One of the most common CVD, that leads to cardiac arrest or myocardial infarction is due to accumulation of plaques in coronary arteries [14]. CAD patients can be diagnosed accurately using angiography which is an invasive, highly technical, painful and costly procedure.

Angiography can be risky and may lead to further aggravation of the disease and is not suitable for screening of larger population. Due to limitations of Coronary Artery Disease diagnostic methods, researchers are seeking other non-invasive methods that are less expensive, less risky, less complex, fast and easily reproducible. Various computation methods such as signal processing and image processing [15-18], Fuzzy logic [19-28], DM techniques [29] namely Decision Tree, Support Vector Machine, Neural Network, Logistic Regression techniques are used by researcher for diagnosis of CAD by using non invasive clinical parameters of subjects (Table 1). Various computational methods used by researchers for early identification of Coronary Artery Disease.
Table 1: Various computational methods used by researchers for early identification of Coronary Artery Disease.

<table>
<thead>
<tr>
<th>References</th>
<th>Methodology</th>
<th>Application Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karaolis et al. [18]</td>
<td>Decision tree</td>
<td>Identification of risk factors for event related to heart disease such as Percutaneous Coronary Intervention, Coronary Bypass Graft Surgery and Myocardial Infarction. Data collected from Paphos district hospital data.</td>
</tr>
<tr>
<td>Nahar et al. [19]</td>
<td>Naïve Bayes, Sequential Minimal optimization, Ada boost, J48 and part, classifiers</td>
<td>Combined knowledge based features and correlation based feature subset selection to predict heart disease using UCI Machine repository data.</td>
</tr>
<tr>
<td>Aalizadehsani et al. [17]</td>
<td>Bagging, Sequential Minimal Optimization, Neural Network and Naïve Bayes</td>
<td>Investigation and construction of three features such as Left Anterior Descending (LAD), Left Circumflex (LCX), or Right Coronary Artery (RCA) form the existing features to determine the higher probability of CAD. The data set used for study is Z-Alizadeh Sani data with 54 attributes and 303 instances</td>
</tr>
<tr>
<td>Wiharito et al. [23]</td>
<td>Decision Tree</td>
<td>Dimensionality reduction with information gain, synthetic minority over sampling technique to solve class imbalance problem using UCI Machine repository data.</td>
</tr>
<tr>
<td>Arabasadi et al. [21]</td>
<td>Genetic Algorithm and Neural Network</td>
<td>Analysis of dimensionality reduction techniques such as Gini Index, Information Gain, Principal Component Analysis and Weighted by SVM. Improvement in prediction accuracy with hybridization. Used Z-alizadeh Sani data for investigation.</td>
</tr>
<tr>
<td>Tsiouras et al. [22]</td>
<td>Decision tree and fuzzy rules</td>
<td>Developed fuzzy rule based system for heart disease diagnosis.</td>
</tr>
<tr>
<td>Anooj et al. [24]</td>
<td>Mamdani Fuzzy Inference System</td>
<td>Developed fuzzy rule based decision support for heart disease diagnosis using UCI Machine repository data.</td>
</tr>
<tr>
<td>Pal et al. [26]</td>
<td>Rule organization method</td>
<td>Prototype of expert system for heart disease detection, Rules were guided by medical experts.</td>
</tr>
<tr>
<td>Marateb et al. [27]</td>
<td>Neuro Fuzzy Classifier</td>
<td>Sequential feature selection and multiple logistic regression to reduce the feature space using UCI Machine repository data.</td>
</tr>
</tbody>
</table>

These intelligent methods proved really effective in the diagnosis and treatment of diseases like diabetes, Parkinson’s, cancer, thyroid, hepatitis, kidney disease and heart disease. The effectiveness of medical treatment is evaluated by comparing causes, symptoms and course of treatments and suggests the best practice procedure based on the produced knowledge and helps the medical practitioners to provide better and affordable healthcare services.

References

How to cite this article:


