
Research Article
Volume 28 Issue 1 - January   2026
DOI: 10.19080/JGWH.2026.28.556227

J Gynecol Women’s Health
Copyright © All rights are reserved by Tesfaye Wolde

J Gynecol Women’s Health 28(1): JGWH.MS.ID.555627 (2026) 001

Journal of
Gynecology and Women’s Health
ISSN 2474-7602

Targeting Ovarian Cancer: Gene Expression 
Profiling and virtual FOXM1 inhibitory Small 
molecule screening for potential therapeutic 

interventions
Mulugeta Belay1, Tesfaye Wolde2,3* and Mamatha Sindhuvalli Kempasiddegowda3

1Department of Biotechnology, College of natural and computational science, Wolkite University, Wolkite, Ethiopia
2Department of Biology, College of natural and computational science, Wolkite University, Wolkite, Ethiopia
3Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

Submission:  December 21, 2025; Published: January 06, 2026

*Corresponding author: Tesfaye Wolde, Department of Biology, College of natural and computational science, Wolkite University, Wolkite, Ethiopia 
and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

Introduction

Ovarian cancer (OC) is one of the most formidable challenges in 
gynecological oncology owing to its high mortality rate, late-stage 
diagnosis, and resistance to conventional therapies [1]. Despite 
advancements in surgical techniques and chemotherapeutic 
regimens, the prognosis of patients with advanced-stage OC 
remains dismal [2], highlighting the urgent need for novel 
therapeutic strategies. The absence of effective early detection 
methods further complicates this problem [3], resulting in the 
majority of cases being diagnosed at a late stage when treatment 
options are limited and often ineffective [4]. Recent technological 
advancements in high-throughput genomics have revolutionized 
our understanding of cancer biology [5]. Gene expression profiling, 
enabled by tools such as microarrays and RNA sequencing, has 
provided deep insights into the molecular mechanisms underlyning 
OC [6]. Datasets such as those available from the Gene Expression 

Omnibus (GEO) have been pivotal in identifying differential 
gene expression profiles that shed light on OC pathogenesis 
[7]. For instance, comparative analyses of high-grade serous 
carcinoma and normal ovarian epithelium, such as those provided 
by datasets GSE7463 and GSE14407, have elucidated the key 
oncogenes and tumor suppressor genes that drive the aggressive 
nature of the disease [8]. To address the complexity of OC, we 
employed a multifaceted approach that integrated comprehensive 
gene expression analysis with functional validation to identify 
novel therapeutic targets. Differentially expressed genes (DEGs) 
were identified using GEO2R [9], adhering to stringent selection 
criteria (adjusted p < 0.05, and log2(fold change) > 1.5) to ensure 
the biological relevance of the findings. The use of Venn diagrams 
to visualize DEG overlaps across multiple datasets allows for the 
identification of consistent gene targets [10], providing a robust 
foundation for subsequent analyses.
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To further elucidate the biological significance of these DEGs, 
functional annotation was performed using Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses using the DAVID database [11]. These analyses revealed 
the biological processes (BP), molecular functions (MF), and 
cellular components associated with the DEGs, as well as the 
pathways that they regulate. Such functional insights are crucial 
for identifying the molecular mechanisms underlying OC and 
potential pathways for therapeutic interventions. Additionally, 
a protein-protein interaction (PPI) network analysis was 
conducted using STRING and Cystoscope [12] to explore the 
interactions between DEGs and identify key regulatory nodes. 
This network-based approach highlights central genes and 
modules with significant interactions, which are prime candidates 
for therapeutic targeting. The identification of hub genes with 
high centrality within the network provided valuable insights 
into potential drug targets and their roles in OC pathology. To 
validate the clinical relevance of these identified hub genes, their 
expression levels were assessed using resources such as GEPIA 
and Oncomine [13]. These tools facilitate the comparison of gene 
expression between OC and normal tissues, and offer insights into 
the prognostic significance of these genes. Immunohistochemical 
analysis of patient tissue samples was also performed [14] to 
confirm gene expression patterns, link gene expression data with 
clinical outcomes, and enhance the translational relevance of the 
findings.

In parallel, an in silico screening approach was used to identify 
potential small molecule inhibitors. The Connectivity Map (CMap) 
database was utilized [15] to query dysregulated genes and 
identify compounds capable of reversing the OC gene expression 
signature. Molecular docking studies using Auto Dock Vina 
and Swiss Dock provided insights into the binding affinities of 
these compounds, highlighting promising candidates for further 
preclinical and clinical evaluation. By integrating gene expression 
profiling with functional annotation and small-molecule screening, 
this study aimed to identify novel therapeutic strategies for OC 
treatment. The combination of high-throughput data analysis 
with experimental validation and computational drug screening 
represents a comprehensive approach to address critical 
challenges in OC treatment. This integrative methodology not only 
enhances our understanding of the molecular mechanisms driving 
OC but also paves the way for developing targeted therapies that 
could significantly improve patient outcomes.

Materials and Methods

Data Acquisition

Two OC microarray datasets were retrieved from the GEO 
database GSE7463: HG_U95Av2 Affymetrix Human Genome U95 
Version 2 Array, consisting of 43 high-grade serous OC samples and 
10 normal ovarian surface epithelium samples [16]. GSE14407: 
Affymetrix Human Genome U133 Plus 2.0, which included 12 

serous papillary OC samples and 12 normal ovarian epithelium 
samples.

Patient Characteristics and Clinical Data

The baseline characteristics of the patients included in 
the analysis were summarized, focusing on age, International 
Federation of Gynecology and Obstetrics (FIGO) stage, histological 
grade, CA125, and HE4 levels [17]. Associations between gene 
expression and clinical outcomes, including overall survival (OS) 
and progression-free survival (PFS), were analyzed using the 
Kaplan-Meier (K-M) and Cox proportional hazards models.

Data Preprocessing

Data preprocessing was performed using GEO2R to identify 
DEGs between the OC and normal samples. A cutoff threshold 
of adjusted p-value < 0.05 and |log2 fold change| > 1.5 was 
applied. The batch effects were corrected as necessary [18]. The 
Venn Diagram web tool (Venny 2.1) was used to determine the 
overlapping DEGs between the two datasets [19].

Functional Annotation and Pathway Enrichment

GO analysis classified DEGs into BPess, MF, and cellular 
component categories [20]. KEGG pathway enrichment was 
performed using the DAVID Bioinformatics Tool (v6.8) with a 
significance threshold set at p < 0.05.

Protein-Protein Interaction (PPI) Network Construction

The CMap database (http://www.broadinstitute.org/cmap/) 
was used to identify potential drugs for patients based on the gene 
signature of OC. Common dysregulated probe sets were queried 
using the CMap database. The upregulated and downregulated 
genes were converted to GPL571 probe IDs using Perl scripts and 
were entered into the CMap official online “rapid query” tool. The 
enrichment scores ranged from -1 to 1. A positive connectivity 
score (closer to 1) indicates a drug capable of inducing the OC cell 
signature, whereas a negative score (closer to -1) indicates a drug 
that can reverse it. Negative connectivity scores were confirmed as 
candidate molecules with potential therapeutic value, and details 
were retrieved from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/).

Identification of Hub Genes

Hub genes were identified based on degree centrality in the 
PPI network. The top eight genes with the highest node degrees 
were selected as hub genes [21]. Validation was performed using 
The Cancer Genome Atlas (TCGA) data via GEPIA, comparing OC 
and normal tissues with |log2FC| > 1.5 and p < 0.05.

Validation of Hub Genes

Intersecting genes from the enrichment pathways and top 
eight nodes in the PPI network were identified as hub genes. 
The “Expression analysis Box Plots” module of GEPIA (http://
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gepia.cancer-pku.cn) was utilized to analyze hub gene mRNA 
levels in OC, using default settings (|Log2FC| Cutoff: 1.5, p-value 
Cutoff: 0.05, and “Match TCGA normal and GTEx data”) [22]. The 
Oncomine database (https://www.oncomine.org/) was used to 
compare the expression levels in OC and normal specimens, with 
a fold change threshold of 1.5, p-value of 0.05, and gene ranking 
of 10%.

Immunohistochemical results of the hub genes were obtained 
from the Human Protein Atlas (version 18, https://www.
proteinatlas.org/). The K-M plotter (http://kmplot.com/analysis) 
was used for survival analysis of the eight hub genes, with a total 
of 1,656 OC patients included in the OS analysis. The genes and 
their corresponding Affy IDs are as follows: CCNB1 (214710_s_at), 
AURKB (204092_s_at), CCNB2 (202705_at), CDK1 (203468_at), 
CENPA (204962_s_at), CENPF (207828_s_at), FOXM1 (202580_x_
at), RRM2 (202580_x_at), NEK2 (204641_at). The median 
expression of hub genes across all samples was chosen as a cut-
off to categorize samples into high and low expression groups, 
followed by K-M analysis to assess patient prognosis.

FOXM1-Centric Protein-Protein Interaction Network 
and functional enrichment Analysis 

A bioinformatics approach was used to analyze the FOXM1 
PPI network in OC. FOXM1-associated proteins were identified 
using STRING, GO, and KEGG pathway enrichment analyses using 
DAVID and Metascape. Significant biological processes, cellular 
components, and MFs were identified with p-values of < 0.05. 
The results were visualized using Cystoscope to explore FOXM1’s 
role in cell cycle regulation and cancer progression, thereby 
highlighting its potential as a therapeutic target.

Small Molecule Identification

The CMap database (http://www.broadinstitute.org/cmap/) 
was used to identify potential drugs for OC patients based on 
the gene signature. Common dysregulated probe sets were used 
to query the CMap database [23]. Using Perl, upregulated and 
downregulated genes were converted to GPL571 probe IDs and 
entered into the CMap “rapid query” tool. Enrichment scores 
ranging from -1 to 1 were calculated, with negative scores 
confirmed as candidate therapeutic molecules, whose tomographs 
were further queried in the PubChem database [24].

In Silico Molecular Docking

In silico screening was conducted using the Auto Dock Vina 
1.0.2. The protein structure was obtained from the Protein 
Databank (www.pdb.org) and prepared for docking using the 
Auto Dock tools. Water molecules were removed and charges and 
nonpolar hydrogens were added using MGL Tools [25].

Structural representations of the National Cancer Institute 
(NCI) diversity set II were obtained from the NCI website and 
converted to PDB format. Individual PDB files for docking were 
prepared using prepare_ligand.py scripts from MGL Tools 1.5.4, 
focusing on the largest non-bonded fragment present [26]. The 
docking grid size was adjusted to encompass the entire FOXM1 
structure or tested derivatives. The docking stringency was set 
to eight, which is the default parameter. Swiss Dock was used as 
a secondary validation tool for docking, using the same protein 
structure (3G73) from the Protein Databank. Ligands were 
prepared using the Chimera program.

Binding Affinity Analysis

The docking results were analyzed by calculating the free 
energy of binding (kcal/mol), where lower values indicate stronger 
binding affinity. Swiss Dock served as a secondary validation tool 
for docking, and binding modes were evaluated based on Full 
Fitness and clustering. The results with the highest affinity scores 
were further assessed for potential therapeutic effects.

Software and Tools

All bioinformatic analyses were conducted using publicly 
available online platforms, including GEO2R, STRING, DAVID, 
GEPIA, Oncomine, and K-M Plotter. Molecular docking was 
performed using Auto Dock Vina and Swiss Dock, and Cyto scape 
was used for PPI visualization.

Statistical Analysis

Statistical analysis was conducted using SPSS (version 
26.0). Chi-square tests were used to assess the associations 
between categorical variables, including the clinicopathological 
characteristics of patients with OC. Statistical significance was set 
at p < 0.05. These tools allow data quantification, visualization, 
and statistical comparisons to be performed efficiently across all 
experiments.

Results 

A total of 4,204 DEGs were identified in OC samples, with 
100 of these genes showing a significant association with OS 
in OC patients. The intersection between DEGs and OS-related 
genes revealed 16 key genes with differential expression and 
prognostic significance (Figure 1). Further analysis identified 432 
overlapping genes (Table 1), consisting of 159 upregulated and 
274 downregulated genes, derived by comparing gene expression 
profiles of OC with the GSE7463 and GSE14407 datasets. Venn 
diagram analysis demonstrated pathway-specific and shared gene 
enrichments across apoptosis, PI3K, MAPK, and cell cycle signaling, 
with MAPK uniquely contributing the largest subset (171 genes, 
23.9%), underscoring its critical role in OC pathophysiology. 

http://dx.doi.org/10.19080/JGWH.2025.28.556227
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Figure 1: Identification of overlapping genes associated with key oncogenic pathways in ovarian cancer.

Table 1: Screening DEGs in OC by integrated microarray [24]

Number of gene Genes name 

Up-regulated (159) 

HMGA1 LZTS3 MECOM SUSD2 CLUH CD24 KLHL14 DUXAP10 SOX17 
MCM10 LOC101060391 C1orf186 CLDN3 GRHL2 ELF3 LYPD6B WFDC2 
NEK2 DLX6-AS1 CP E2F1 MPZL2 FOXM1 NES SMIM22 ESM1 ARHGAP11B 
SLC52A2 KLF12 KIF14 CLDN4 C1orf106 TIMELESS CYYR1 FOLR1 SUSD4 
PSAT1 DLGAP5 EHF NRXN1 PAX8 KIF20A SCGB2A1 FILIP1 BUB1 GPM6B 
LPAR3 FAM83D TTK AIF1L TRIP13 CENPF CEP55 NCAPG SLC4A11 
RNF157-AS1 DTL IGF2BP3 CATIP-AS1 CDCA5 KIF4A S100A1 SLC2A1 
EPCAM KIF11 EPHX4 STON2 BUB1B MELK UBE2C LIMS3 CRABP2 MUC1 
SULT1C2 CENPA SOX9 PROM2 CBS SORT1 ESRP1 MXD3 CKS2 CDK1 
PRC1 FZD10 CDC20 CXXC5 TOP2A CENPK CDH6 MMP7 LOC101928554 
FOXQ1 ECT2 LINC00511 ESCO2 C8orf4 CCNB2 NUSAP1 S100A2 KLK6 
LYNX1 PRR11 KIAA0101 C12orf56 LYPD1 EPB41L5 RGS1 PRSS2 LRP8 
CENPU NR2F6 SLC26A7 HMMR CCNB1 RAD51AP1 S100A13 RRM2 
PRAME ST6GALNAC1 MTHFD2 MTFR2 MAL TTC39A INHBB KLK8 
AURKB KIAA1217 LOC150051 DCDC2 DIS3L2 HEY2 GLDC TMTC1 
LCN2 DUXAP10 DEPDC1 RAPGEF3 DIRAS2 MAGEA11 HIST1H1C PTX3 
KCCAT333 PCDH7 NRTN TFAP2A SCGB1D2 HMGA2 MEOX1 FAM107A 

DEFB1 PTH2R LOC613266 COL12A1 WDR72 LIX1 SST PDCL2 

http://dx.doi.org/10.19080/JGWH.2025.28.556227
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Down-regulated (274) 

LINC01105 BNC1 ITLN1 LHX9 MAF PDE8B GADL1 PEX5L SVEP1 ABCA8 
REEP1 NKX3-1 METTL7A HAND2-AS1 HBB SNX29P2 SNCAIP OGN GFPT2 
SYT4 SNX13 ANTXR2 SLC4A4 MNDA AADACL2 DIRAS3 CHGB WNT2B 
CLDN15 HBA1 NPY1R AOX1 GPRASP1 BCHE PRG4 PPM1K TBX3 LGALS2 
CLEC4M DOCK5 HELQ TCEAL2 AGTR1 SMPD3 TCEAL7 S100A10 SFRP1 
PCOLCE2 SNCA PKD2 ADH1B SHISA3 DDR2 PTPRZ1 DFNA5 B3GALT2 
MTUS1 LGALS8 ADH1C PRSS35 EIF1 ALDH1A2 DSC3 AKAP12 TCF21 
PCDH9 PROCR NBR1 CMAHP CALB2 CPB1 CSGALNACT1 ARHGAP18 
GATA4 FLRT2 SEMA5A THBD OGFOD1 DST BTD FAM153B MGARP COL8A1 
LHX2 WNT16 LSAMP HBG1 ABHD12B ANKRD29 CHRDL1 SORBS2 
HLF DAB2 ADGRD1 PTGDR OMD GAS1RR RYR2 SERTM1 KLF2 RTN1 
MGC24103 LOC100996760 MCTP2 KCNT2 TMEM37 PDGFD SPOCK1 
PLEKHH2 VGLL3 TMEM255A ILDR2 ARX ANXA8 LINC01133 ANXA1 
NELL2 DMD PTGIS NR2F1-AS1 HHIP LOC286191 CXorf57 SLC30A4 
PAPSS2 FGF1 PLCE1 BDH2 TFPI BCAR3 RBMS3 NEFH PEG3 PMP22 
IL18 FAM153B C7 RERG MEOX2 HSD17B2 MARCO PRDM5 RAB27B 
GHR IRAK3 AKT3 FGF13 ABI3BP CALCRL MEDAG CPED1 NT5E HPSE 
EZR OLFML1 SLC41A2 ALDH1A1 NEGR1 PTGER3 BAMBI PCDH17 CFI 
GIPC2 DOCK11 CELF2 MUM1L1 SBSPON NLGN4X CFC1 DPP10 RNASE4 
AQP9 CYP39A1 LY75 DTNA RGS4 SCD5 EFEMP1 MMP28 LIMA1 GPM6A 
SDPR PRRX1 NAP1L2 CLMP GABRB2 RUNX1T1 RNF128 NXPH2 AKR1C2 
CYP2U1 CNTN1 PTHLH NAP1L3 SIGLEC11 FABP4 PITPNC1 CAV1 DSE 
CNTN4 KLF4 PDPN FLRT3 C1orf168 FAM134B ARHGAP44 CBLN4 GATM 
HSD17B6 ECM2 PGR PKHD1L1 CFH SFRP2 HPGD ADAMTS3 TMEM150C 
DPYD MGP MCOLN3 LAMA4 CYS1 NKAIN2 COL14A1 S100A8 TRPC1 
FAM13C MCC RARRES1 TBX18 COL3A1 BNC2 LRP2 DCN LINC01279 
NBEA SLITRK5 ITM2A FRY GNG11 FGF9 FAM155A CCDC80 LINC01116 
ZFPM2 GAS1 FRAS1 TMEM98 WDR17 TSPAN8 RASSF3 SLIT2 PRKAR2B 
NDN TFPI2 DPP6 MDFIC TLE4 PROS1 PHLDB2 CFH NRXN3 MSRB3 BEX1 
MEIS2 ARRDC4 GATA6 STK26 MAOA CRNDE WNT5A RSPO1 MICU3 

PCDH20

A total of 4,204 differentially expressed genes (DEGs) were 
identified in OC samples, among which 100 genes showed 
significant association with overall survival (OS) in OC patients. 
The intersection between DEGs and OS-related genes revealed 
16 key genes with both differential expression and prognostic 
significance. Comparative analysis with GSE7463 and GSE14407 
datasets identified 432 overlapping DEGs, including 159 
upregulated and 274 downregulated genes. The Venn diagram 
illustrates the distribution of DEGs across four critical signalling 
pathways apoptosis, PI3K, MAPK, and cell cycle highlighting the 
genes uniquely enriched in each pathway as well as shared subsets 
across multiple pathways. These overlapping genes represent 

potential drivers of OC pathophysiology and candidate prognostic 
markers.

GO analysis of the shared DEGs was conducted using the ggplot2 
R package, focusing on the top 10 significantly enriched GO terms 
and pathways based on p-values. GO BP analysis revealed that these 
DEGs were significantly enriched in processes associated with cell 
cycle regulation, particularly mitotic transitions and chromatid 
segregation. Notably, the highest fold enrichment was observed in 
pathways regulating the mitotic metaphase-anaphase transition 
(Figure 2A), indicating that dysregulation of these processes may 
be pivotal in OC pathology, as well as in the biological conditions 
reflected by the GSE7463 and GSE14407 datasets.

http://dx.doi.org/10.19080/JGWH.2025.28.556227
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Figure 2: Functional enrichment analysis of ovarian cancer hub genes

In the MF category, overlapping DEGs showed marked 
enrichment in activities related to calcium-induced calcium release 
and 5-deoxy-5-ribose-phosphate lyase, with fold enrichment 
exceeding 4 (Figure 2B). For the cellular component, DEGs were 
significantly associated with the anchoring collagen complex, 
replication fork protection complex, and senescence-associated 
heterochromatin foci (Figure 2C), suggesting a potential role in 
maintaining genomic integrity and cellular senescence. KEGG 
pathway enrichment analysis demonstrated that these DEGs 
were primarily involved in pathways such as tyrosine, glycine-
serine-threonine, retinol, cell cycle, and drug metabolism. These 
findings highlight key molecular pathways that may contribute 
to OC progression and offer potential therapeutic targets for 
intervention.

Gene Ontology (GO) enrichment analysis was performed to 
characterize the biological relevance of the identified hub genes. 

(A) Biological Process (BP) terms were significantly enriched in 
pathways regulating cell cycle progression, mitotic nuclear division, 
and chromosome segregation, highlighting strong involvement 
in mitotic control. (B) Molecular Function (MF) enrichment 
revealed associations with DNA-binding transcriptional activity, 
protein kinase binding, chromatin binding, and regulatory 
sequence-specific DNA binding, underscoring their role in 
transcriptional regulation and cell-cycle checkpoint control. (C) 
Cellular Component (CC) analysis indicated strong enrichment in 
chromosomal regions, spindle apparatus, kinetochore, replication 
fork protection complexes, and anchoring collagen complexes, 
reflecting their localization to structures critical for mitosis, 
chromosomal stability, and cell division. Node size corresponds 
to fold enrichment, with color intensity reflecting degree of 
significance. The PPI network was constructed using differentially 
expressed genes (DEGs) significantly associated with ovarian 

http://dx.doi.org/10.19080/JGWH.2025.28.556227
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cancer, comprising 251 nodes and 1,019 edges with an average 
node degree of 8.12 and clustering coefficient of 0.436 (expected 
edges: 271; PPI enrichment p < 0.001). FOXM1 (highlighted in 
yellow) emerges as a central hub interacting with key regulators of 
the cell cycle, mitosis, and transcriptional control, including CDK1, 
CCNB1, CCNB2, AURKB, CENPA, CENPF, MYC, and EP300. Red 
edges denote stronger confidence interactions, while blue edges 
represent moderate interactions. The high connectivity of FOXM1 
underscores its role as a master regulator of oncogenic signaling 
and validates its potential as a therapeutic target in ovarian cancer. 
The PPI network analysis identified 251 nodes and 1,019 edges, 
underscoring the complexity of the gene interactions involved 
in OC. Among these, the module genes AURKB, CCNB1, CCNB2, 
CDK1, CENPA, CENPF, FOXM1, and NEK2 emerged as the top eight 
hub genes, exhibiting the highest node degree (Supplementary 

Figure 1) and, thus playing a central role in network functionality. 
These hub genes were highlighted because of their significant 
involvement in key biological processes, particularly those related 
to cell cycle regulation and mitotic control.

Furthermore, the most crucial PPI network module was 
identified using the MCODE algorithm, which identified highly 
interconnected gene clusters. Pathway enrichment analysis of 
this top module revealed that these genes were predominantly 
enriched in critical pathways such as the p53 signaling pathway, 
progesterone-mediated oocyte maturation, oocyte meiosis, cell 
cycle, and cellular senescence (Table 2). These findings suggest 
that these pathways may serve as pivotal regulators of OC 
progression and offer potential therapeutic avenues for targeted 
intervention.

Table 2: Enriched KEGG pathways in OC gene network: pathway strength and false discovery rates

Pathway Description Count in network Strength False discovery rate

hsa04115 p53 signaling pathway 3 of 72 2.01 0.00098

hsa04914 Progesterone-mediated 
oocyte maturation 3 of 95 1.89 0.0011

hsa04114 Oocyte meiosis 3 of 121 1.79 0.0015

hsa04110 Cell cycle 3 of 120 1.79 0.0015

hsa04218 Cellular senescence 3 of 150 1.69 0.0017

Footnote: The table lists the enriched KEGG pathways identified in the OC gene network. The “Count in network” column represents the 
number of genes involved in each pathway out of the total network size. “Strength” refers to the degree of enrichment, while the “False 
Discovery Rate” indicates the likelihood of false positives, with lower values representing higher confidence in the enrichment.

Using GEPIA and Oncomine, we confirmed that AURKB, 
CCNB1, CCNB2, CDK1, CENPA, CENPF, FOXM1, and NEK2 were 
significantly overexpressed in OC tissues compared to normal 
tissues (Figure 3A-H). Overall survival (OS) curves for ovarian 
cancer patients were generated according to high (red) and low 
(black) mRNA expression levels of (A) AURKB, (B) CCNB1, (C) 
CCNB2, (D) CDK1, (E) CENPA, (F) CENPF, (G) FOXM1, and (H) 
NEK2. Hazard ratios (HR) with 95% confidence intervals and log-
rank p-values are shown. High expression of CCNB1, CCNB2, CDK1, 
CENPA, CENPF, FOXM1, and NEK2 was significantly associated with 
worse OS, underscoring their prognostic value in ovarian cancer. 
Elevated levels of CCNB1, TOP2A, NUSAP1, NCAPG, KIF20A, and 
DLGAP5 were also linked to worse OS in patients (Supplementary 
Figure 2A-H), emphasizing their clinical relevance. The Human 
Protein Atlas further validated the high protein expression levels 
of these genes in OC. Notably; FOXM1 has emerged as a key 
oncogene with strong overexpression, prognostic significance, 
and drug-targeting potential, making it a prime candidate for 

therapeutic development in OC. As shown in (Table 3), AURKB 
was predominantly localized in the nuclear region, with a high 
expression rate of 7/12 (58.3%) in serous ovarian cancer (SOC) 
samples, which was significantly higher than that in benign serous 
ovarian cystadenoma (5/12, 41.6%). CCNB1 and CCNB2 were 
primarily located in the cytoplasmic/membranous region, with 
low expression rates of 9/12 (58.3%) and 5/12 (58.3%) in SOC, 
respectively, both of which were higher than those in the benign 
samples. CDK1 showed nuclear and cytoplasmic localization, 
with a low expression rate of 4/11 (58.3%) in SOC compared to 
5/12 (41.6%) in benign cystadenomas. CENPA was localized to 
the nucleus, with high expression in 6/12 (58.3%) SOC samples, 
which was higher than that in benign samples. CENPF exhibited 
both nuclear and cytoplasmic localization, with a low expression 
rate of 8/12 (58.3%) in SOC. Notably, FOXM1 was highly expressed 
in 10/11 (90.9%) SOC samples, which was significantly higher 
than that in benign cystadenoma (1/11, 9.1%, P<0.05), with 
localization in both the nucleus and the cytoplasmic membrane.
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Figure 3: Differential mRNA expression of candidate oncogenes in ovarian cancer (OC)

Table 3: Key Oncogenes and their characteristics in OC: Expression levels, prognostic significance, and druggability

Gene Expression level P r o g n o s t i c 
significance Druggability Cellular localization Notes

FOXM1 High Strongly associated 
with poor prognosis

High potential for 
targeted therapy Nucleus Key oncogene in OC; involved in 

cell proliferation and survival.

AURKB High Associated with poor 
OS

Moderate; inhibitors 
in development Nucleus Critical for mitosis; overexpressed 

in OC.

CCNB1 High Poor prognosis linked Moderate C y t o p l a s m i c /
Membranous

Important in cell cycle regulation; 
potential target.

CCNB2 Moderate Poor prognosis linked Low C y t o p l a s m i c /
Membranous

Similar role as CCNB1 but less 
studied.

CDK1 High Poor prognosis linked Moderate Nuclear/Cytoplasmic Regulates cell cycle progression; 
targeted by several inhibitors.

CENPA Moderate Not extensively 
studied Low Nucleus Involved in chromosomal stability; 

potential relevance.

CENPF Moderate Not extensively 
studied Low Nucleus Similar role as CENPA; lesser 

known.

NEK2 Moderate Mixed association Moderate Cytoplasmic Involved in DNA synthesis; 
targeted in some therapies.

Footnote: The table summarizes critical genes involved in OC, detailing their expression levels, prognostic significance, druggability 
potential, and cellular localization. FOXM1, AURKB, and CCNB1 are highlighted for their strong association with poor prognosis and 
potential as therapeutic targets. Druggability refers to the feasibility of targeting these genes with existing or developmental therapeutic 
compounds.

Box plots show the relative expression levels of (A) AURKB, 
(B) CCNB1, (C) CCNB2, (D) CDK1, (E) CENPA, (F) CENPF, (G) 
FOXM1, and (H) NEK2 in ovarian cancer tissues (red, n = 426) 

compared with normal ovarian tissues (black, n = 88), based 
on GEPIA and Oncomine analyses. All genes were significantly 
overexpressed in OC tissues (p < 0.05, indicated by red asterisks). 
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These findings highlight the aberrant activation of cell-cycle–
related regulators and underscore their potential roles in ovarian 
cancer pathogenesis. In OC single-cell functional state analysis, 
FOXM1 was identified as the most critical gene among the eight 
genes analyzed, demonstrating the strongest correlation with 
cell cycle regulation (score: 0.83) and proliferation (score: 0.79) 
(Figure 4A-4H). These associations indicate that FOXM1 plays a 
central role in driving OC tumor progression by promoting rapid 
cell division and facilitating cell cycle transition. Its significant 
involvement in these essential cancer processes underscores 
FOXM1 as a top priority for therapeutic targeting, particularly in 

treatments aimed at disrupting uncontrolled tumor proliferation. 
Other genes, such as AURKB, CCNB1, CCNB2, CDK1, CENPA, CENPF, 
and NEK2 also contribute to functional states linked to the cell 
cycle and proliferation, but their impact is less pronounced. For 
instance, CDK1 and AURKB are involved in cell cycle regulation, 
whereas CCNB1 and CCNB2 are involved in cell division and 
mitosis. Despite these roles, FOXM1’s dominant influence on both 
the cell cycle and proliferative activity in OC positions it as the 
most important gene in this cohort, making it a primary target for 
potential therapeutic interventions.

Figure 4: Correlation of candidate genes with functional states in ovarian cancer (OC) single-cell analysis.

Single-cell transcriptomic functional state analysis was 
performed to evaluate the association of eight genes (AURKB, 
CCNB1, CCNB2, CDK1, CENPF, NEK2, FOXM1, and CENPA) with 
key cancer-related processes. (A–H) Correlation plots depict 
the relationship between gene expression levels and functional 
states, including cell cycle, proliferation, DNA damage, DNA repair, 
invasion, epithelial–mesenchymal transition (EMT), inflammation, 
angiogenesis, hypoxia, and quiescence. Among the analyzed genes, 
FOXM1 demonstrated the strongest correlation with cell cycle 
regulation (r = 0.83) and proliferation (r = 0.79), underscoring 
its central role in driving tumor progression by promoting rapid 
cell division and facilitating cell cycle transitions. Although other 

genes, including AURKB, CDK1, CCNB1, CCNB2, CENPF, NEK2, and 
CENPA, also exhibited positive associations with cell cycle and 
proliferative states, their impact was less pronounced compared to 
FOXM1. These findings highlight FOXM1 as a dominant regulator 
of proliferative activity in OC, making it a promising therapeutic 
target for interventions aimed at disrupting uncontrolled tumor 
growth.

The table highlights FOXM1 as the best candidate among the 
eight genes based on various criteria such as expression level, 
prognostic significance, druggability, and localization. This table 
includes other genes for comparison, emphasizing the advantages 
of FOXM1.
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FOXM1 is considered for further analysis because of its strong 
association with poor prognosis in OC and its high druggability 
potential. As a key oncogene, FOXM1 plays a crucial role in 
promoting cell proliferation and survival and is a critical factor 
in cancer progression. Its high expression levels and nuclear 
localization highlight its relevance in tumor biology. Given its 
involvement in these fundamental cellular processes and its 
potential as a therapeutic target, FOXM1 represents a promising 
candidate for developing targeted treatments for OC, warranting 
further investigation. This figure illustrates the differential 
expression of FOXM1 between tumor and normal tissues and 
further evaluates its potential diagnostic utility through specificity 
and sensitivity analyses based on normal tissue expression 
thresholds. Analysis of FOXM1 expression revealed a significant 
elevation in OC tissues compared to normal controls. The boxplot 
(left panel) demonstrated markedly higher FOXM1 transcript levels 
in tumors, with a clear upward shift in expression distribution and 
a borderline significant difference (P = 5.91 × 10⁻²). To further 
assess the discriminatory power of FOXM1, tumor expression levels 
were compared against different percentile-based cutoffs derived 
from normal tissues (right panel). Across minimum, first quartile 
(Q1), median, and third quartile (Q3) thresholds of normal FOXM1 
expression, 100% of tumor samples exhibited higher expression, 
indicating robust overexpression across the OC cohort. Even at the 
maximum cutoff of normal expression, 40% of tumors remained 
above the threshold, emphasizing that a substantial subset of 
OC harbors FOXM1 upregulation beyond physiological variation. 
(A) Boxplot showing FOXM1 expression significantly elevated in 
tumor tissues compared with normal controls (P = 5.91 × 10⁻²). 
(B) Proportion of tumors exceeding FOXM1 expression cutoffs 
derived from normal tissues. Across minimum, Q1, median, and 
Q3 thresholds, 100% of tumors showed higher expression, while 
40% remained elevated even above the maximum normal cutoff. 
Specificity increased progressively with higher cutoffs, reaching 
1.0 at the maximum threshold. Specificity analysis showed a 
progressive increase from ~0.55 at the minimum cutoff to ~1.0 at 
the maximum cutoff, confirming FOXM1’s strong discriminatory 
potential between tumor and normal states (Supplementary 
Figure 3). These findings collectively highlight FOXM1 as a 
consistently elevated gene in OC, supporting its role as a tumor-
associated driver and a candidate diagnostic biomarker.

In summary, this figure underscores FOXM1’s potential as a 

tumor biomarker, with consistent overexpression across cancer 
samples. Its diagnostic value depends on the cut-off strategy; 
lower thresholds offer high sensitivity but lower specificity, 
whereas higher thresholds increase specificity at the expense of 
sensitivity. These findings suggest that FOXM1, either alone or in 
combination with other markers, may be a useful candidate for 
cancer detection and stratification. FOXM1 (Forkhead box protein 
M1) is a critical transcription factor that regulates cell cycle 
genes essential for DNA replication and mitosis, making it a key 
player in OC progression. The PPI network surrounding FOXM1 
highlights its central role in regulating critical mitotic processes, 
as evidenced by its association with key proteins such as CDK1 
and PLK1 (Supplementary Figure 1). CDK1 is pivotal for G2 to 
M phase transition, whereas PLK1 facilitates various functions 
during mitosis, including spindle assembly and mitotic exit. 
Additionally, FOXM1 interacts with cyclin CCNB1 and CCNA2, 
which control the transition to the G2/M and G1/S phases. These 
interactions emphasize FOXM1’s function in orchestrating cell 
cycle checkpoints and maintaining proliferative signaling in OC 
cells.

Moreover, FOXM1 interactions extend beyond traditional 
cell cycle regulators to include proteins such as CTNNB1 and 
EP300, suggesting potential crosstalk with signaling pathways 
such as Wnt and epigenetic regulation of gene expression. The 
connection between FOXM1 and BIRC5 (survivin) indicated its 
role in promoting cancer cell survival by inhibiting apoptosis, 
further confirming its importance in OC. Given these interactions 
and FOXM1’s overarching influence on cell proliferation and 
survival, targeting FOXM1 and its network partners could 
represent a promising therapeutic strategy for disrupting the 
aggressive proliferation of OC cells, positioning FOXM1 as a vital 
candidate for further research and clinical intervention. GO and 
KEGG pathway analyses of the FOXM1 PPI network in OC revealed 
significant enrichment in several BP, cellular components, and 
molecular functions relevant to cancer biology. In the BP category, 
FOXM1-associated genes were particularly enriched in pathways 
related to the G2/M transition of the mitotic cell cycle (p = 1. x 10-
10), cell cycle G2/M phase transition (p-value: 1.6 x 10-10), and 
mitotic cell cycle checkpoint signalling (p-value: 5.9 x 10-7). These 
findings indicated that FOXM1 is involved in cell cycle progression 
and checkpoint regulation, which are critical mechanisms in 
cancer proliferation and tumorigenesis (Figure 5A). 
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Figure 5: Gene Ontology (GO) and KEGG pathway enrichment analysis of FOXM1-associated genes in ovarian cancer.

In the Cellular Component (CC) category, the genes 
associated with FOXM1 were significantly enriched in the outer 
kenetockore (p = 2.2 x 10-6), cell cycle-dependent protein 
kinase holoenzyme complex (p = 3.0 x 10-5), and nucleoplasm 
(p = 2. x 10-5). Enrichment in the nucleoplasm (p = 2.3 x 10-5) 
further underscores their role in altered nuclear dynamics and 
transcriptional regulation, a hallmark of cancer progression and 
metastasis (Figure 5B). This association indicates that FOXM1 and 
its interacting partners not only play essential roles in cell cycle 

control but also contribute to the regulatory networks governing 
gene expression within the nucleus. 

(A) Biological Process (BP) analysis revealed significant 
enrichment in cell cycle–related pathways, including G2/M 
transition of the mitotic cell cycle, mitotic checkpoint signaling, 
and regulation of mitotic processes. (B) Cellular Component 
(CC) analysis showed enrichment in outer kinetochore, cyclin-
dependent protein kinase holoenzyme complex, spindle pole, 
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and nucleoplasm, underscoring FOXM1’s nuclear and mitotic 
functions.

(C) Molecular Function (MF) analysis indicated significant 
enrichment in cyclin-dependent protein serine/threonine kinase 
regulator activity, β-catenin binding, and protein C-terminus 
binding, highlighting FOXM1’s role in cell cycle regulation and 
transcriptional control. (D) KEGG pathway analysis demonstrated 
enrichment in cell cycle, progesterone-mediated oocyte 
maturation, cellular senescence, adherens junction, and pathways 
in cancer, emphasizing FOXM1’s central involvement in ovarian 
tumorigenesis and progression. Dot size indicates the number of 
enriched genes, while color represents significance level (–log10 
FDR).

In the MF category, the analysis revealed significant 
enrichment in cyclin-dependent protein serine/threonine kinase 
regulator activity (p-value: 5.7 x 10-3), beta-catenin binding (1.2 x 
10-2), and Protein C-terminus binding (p-value: 4.8 x 10-3). This 
emphasizes the role of these MFs in regulating critical biological 
processes that maintain cellular homeostasis and tissue integrity, 
which are frequently targeted in cancer therapies to disrupt 
tumor growth and survival (Figure 5C). FOXM1 serves as a critical 
regulator of MFs essential for cell cycle control and signaling, 
influencing key pathways that maintain cellular homeostasis and 
tissue integrity, thereby positioning it as a promising therapeutic 
target for OC. KEGG pathway analysis reinforced these findings, 
revealing substantial enrichment of several pathways that are 
crucial for cancer progression. Cell cycle (p-value: 1.3 x 10-7), 
progesterone-mediated oocyte maturation (2.5 x 10-6), cellular 
senescence (p-value: 1.9 x 10-7), and adherens junction (p-value: 
3.2 x 10-3) (Figure 5D). These findings indicate the involvement 
of the gene set in critical processes such as cell proliferation, 
hormonal regulation of ovarian functions, cellular aging, and 
maintenance of cell adhesion within the tumor microenvironment, 
highlighting their collective contribution to tumorigenesis 
and cancer progression. Additionally, enrichment in the FoxO 
signaling pathway (p-value: 3.7 x 10-4) highlights the role of this 
gene set in regulating oxidative stress responses and apoptosis, 
both of which are essential for regulating cancer cell survival 
and proliferation. This suggested that FOXM1 and its associated 
genes may influence the balance between cell death and survival, 
thereby playing a critical role in OC progression and therapeutic 
resistance. Together, GO and KEGG pathway analyses of the 
FOXM1 PPI network provided a comprehensive understanding of 
the functional roles of FOXM1-associated genes in OC, revealing 
key biological processes and signaling pathways that could be 
exploited for therapeutic interventions, particularly through 
targeted and combination therapy approaches. These insights 
emphasize the potential of FOXM1 as a strategic target for the 
development of novel therapeutic strategies aimed at disrupting 
molecular mechanisms underlying OC progression.

According to the p-value analysis, the top eight small 
molecules correlated with OC gene expression changes are listed 

in Table 5. Six of these molecules exhibited a negative correlation, 
indicating their potential tumor-inhibitory effects in clinical 
settings. These four molecules were positively correlated. Among 
those with significant negative correlations (P<0.05), trichostatin 
A, vorinostat, 8-azaguanine and phenoxybenzamine suggested 
that these compounds may suppress tumorigenic pathways. 
CMap analysis identified 19 small molecules significantly 
associated with OC (Table 4). Trichostatin A and vorinostat have 
emerged as the most promising therapeutic inhibitors, with 
highly negative enrichment scores and extremely low P-values, 
indicating a strong potential for clinical use. Phenoxybenzamine 
and 8-azaguanine also showed significant negative correlations, 
further supporting their relevance to the inhibition of OC-related 
pathways. In contrast, podophyllotoxin, chenodeoxycholic acid, 
and thioperamide exhibited positive enrichment scores, implying 
their potential roles in activating or supporting key OC biological 
processes. These findings suggest that these molecules hold 
promise for therapeutic development and as investigative tools 
for OC research.

Table 4: List of the top ten OC-related small molecules that 
exhibited highly significant correlations in the results of the CMap 
analysis [24].

Rank CMap name Mean N Enrichment p value 

1 Trichostatin A –0.469 182 –0.428 0

2 Vorinostat –0.598 12 –0.621 0

3 Phenoxybenzamine –0.835 4 –0.937 0

4 8-azaguanine –0.768 4 –0.917 0.0001

5 Resveratrol –0.694 9 –0.669 0.00016

6 Podophyllotoxin 0.672 4 0.849 0.00074

7 Chenodeoxycholic 
acid 0.595 4 0.846 0.0008

8 Thioperamide 0.563 5 0.798 0.00082

9 Vinburnine 0.576 4 0.83 0.00127

The table highlights the significant overexpression of key 
genes (FOXM1, CCNB1, AURKB, CDK1, CENPA, CCNB2, CENPF, 
and NEK2) in malignant OC compared with that in benign and 
borderline tumors. FOXM1, with a highly significant p-value 
(< 0.00001), was overexpressed in 77.1% of malignant cases, 
underscoring its critical role in tumor proliferation and 
aggressiveness. Similarly, genes such as CCNB1, AURKB, and CDK1, 
with p-values of 0.00036, 0.00045, and 0.00069, respectively, 
were strongly involved in cell cycle regulation, particularly in the 
G2/M transition and mitotic processes. Differential expression 
of these genes across malignancy levels not only marks them as 
valuable diagnostic biomarkers but also highlights their potential 
in prognostic assessments by correlating their expression with 
disease progression and patient outcomes. The therapeutic 
potential of these genes is attributed to their direct involvement in 
vital cellular processes. FOXM1, AURKB, and CDK1 are particularly 
promising druggable targets, where inhibitors aimed at halting cell 
cycle progression or disrupting mitotic function could effectively 
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impair tumor growth. Given their critical roles in tumor biology, 
targeting these genes offers opportunities for the development 
of precise mechanism-based treatments for OC. Their high 
prognostic value combined with their draggability positions them 
as key targets for both personalized medical approaches and novel 
therapeutic interventions, ultimately enhancing the efficacy of OC 
treatment strategies. FOXM1, CCNB1, and AURKB have emerged 
as top performers in malignancy, with FOXM1 showing the highest 
significance and potential as a therapeutic target because of its 

strong association with malignancy. CCNB1 and AURKB are also 
significantly overexpressed in malignant tumors, suggesting their 
role in tumor progression and making them promising targets 
for targeted therapies. CDK1 and CENPA are notably expressed 
in malignant cases, and may be valuable for both diagnostic and 
therapeutic applications. CCNB2 and CENPF offer slightly less 
pronounced results, but still represent potential biomarkers 
and therapeutic targets. NEK2, although statistically significant, 
requires further validation to incomplete data (Table 5). 

Table 5: Expression of DEGs from two data sets in different ovarian tissues

Gene Group Cases Expression

 High expression cases Low expression cases χ2 P.value

FOXM1 Malignant 38 29 (77.1%) 9 (22.9%) 27.349 < 0.00001

Benign 19 3 (15.7%) 16 (85.7%)

Borderline 8 2 (13.3%) 13 (86.7%)

CCNB1 Malignant 35 23 (65.7) 12 (34.3) 15.863 0.00036

Benign 17 3 (17.6) 14 (82.4)

Borderline 13 2 (15.4) 11 (84.6)

AURKB Malignant 36 24 (66.7) 12 (33.3) 15.413 0.00045

Benign 18 2 (11.1) 16 (88.9)

Borderline 11 4 (36.4) 7 (63.6)

CDK1 Malignant 30 19 (63.3) 11 (36.7) 14.568 0.00069

Benign 24 4 (16.7) 20 (83.3)

Borderline 11 2 (18.2) 9 (81.8)

CENPA Malignant 32 21 (65.6) 11 (34.4) 11.638 0.00297

Benign 17 5 (29.4) 12 (70.6)

Borderline 16 3 (18.8) 13 (81.2)

CCNB2 Malignant 33 21 (63.6) 12 (36.4) 9.096 0.01058

Benign 19 4 (21.1) 15 (78.9)

Borderline 8 3 (37.5) 5 (62.5)

CENPF Malignant 37 21 (56.8) 16 (43.2) 8.204 0.01653

Benign 18 4 (22.2) 14 (77.8)

Borderline 10 2 (20) 8 (80)

NEK2 Malignant 31 18 (58.1) 13 (41.9) 7.031 0.0297

Benign 20 6 (30) 14 (70)

Borderline 14 5 (35.7) 9 (64.3)

Footnote: The table shows gene expression differences (high vs. low) across malignant, benign, and borderline tumor groups. χ² tests 
compare expression distributions, with significant P-values (< 0.05) indicating association between gene expression and tumor type. 
Percentages reflect proportions within each group. Missing values (e.g., NEK2 benign/borderline) suggest data formatting gaps.	

The identification of the binding cavity in which FOXM1 
interacts with small molecules is pivotal for the discovery of 
novel FOXM1 inhibitors via structure-based virtual screening. 
The crystal structure of FOXM1 (PDB ID: 3G73) retrieved from the 
RCSB protein database was used to generate the receptor model 
for molecular docking. Previous studies have mapped the binding 
site of FOXM1 where small molecules are predicted to interact, 
as shown in (Figure 6A). The surface-binding mode of FOXM1 is 

depicted in (Figure 6B), highlighting its interaction dynamics. (A) 
3D surface representation of FOXM1 binding pocket showing the 
ligand docked at the active site. The binding surface is colored 
according to electrostatic potential, with the ligand shown in stick 
representation. Key binding interactions, including hydrogen 
bonds, π–π stacking, and hydrophobic contacts, are highlighted. 
(B) 2D interaction diagram of the ligand–FOXM1 complex 
depicting the specific amino acid residues involved in ligand 
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binding. Conventional hydrogen bonds (green), π–π interactions 
(purple), alkyl interactions (orange), and van der Waals forces 
(grey) are indicated. Notable interacting residues include ARG236, 
LYS278, ALA278, PRO279, GLY280, TRP281, and ASN283, which 
stabilize ligand binding within the FOXM1 active site. Key residues, 
particularly ARG236 and TYR272, were identified as critical for the 
binding affinity between FOXM1 and small molecules, as shown 
by the docking pose (Supplementary Figures 4A and 4B). These 
amino acids contribute to the structural integrity and functional 
capacity of the binding site, which was used for the subsequent 

virtual screening of potential inhibitors. Our study commenced 
with a structure-based virtual docking screen of the NCI Diversity 
Set 2, which encompasses 265,242 chemically diverse compounds 
(Figure 6C). Using AutoDock Vina (ADV), we docked 1,880 of 
these compounds to FOXM1. The compounds were ranked based 
on their predicted binding free energies (ΔG_ADV), which varied 
from −2.8 to −7.8 kcal/mol. Notably, 13.7% of the compounds 
exhibited binding energies lower than −6.0 kcal/mol, surpassing 
the benchmark set by FDI-6 (Figure 6D).

Figure 6: Structure-based virtual screening and compound selection for FOXM1 inhibition.

Ribbon representation of FOXM1 protein structure showing 
its DNA-binding domain. (B) Molecular docking visualization 
depicting the binding pose of a screened compound within the 
FOXM1 active site. (C) Workflow of virtual screening and filtering 
pipeline: from NCI Diversity Set II, the top 500 compounds were 
selected, followed by successive filtering steps including Lipinski’s 
Rule of Five (266 compounds), van der Waals filtering (198 
compounds), toxicity filtering (143 compounds), and clustering 
analysis, yielding 8 candidate active compounds. (D) Distribution of 
docking free energy scores (ΔGADV) across screened compounds, 
highlighting the strong binding profile of NCI-DS2-1880. To refine 
the selection process and discard unsuitable candidates, a three-

step filtering process was applied. First, we narrowed down to 
the top 500 compounds based on their binding energies and then 
assessed them using Lipinski’s “Rule of Five” and the Veber rule 
to ensure drug-like properties. Finally, we utilized the “toxicity 
prediction” tool in Discovery Studio (DS) to exclude compounds 
with potential carcinogenic, mutagenic, or teratogenic effects. This 
rigorous filtering resulted in a final set of 25 drug-like compounds 
suitable for further evaluation.

Subsequently, we conducted a comprehensive evaluation of 
the binding energy data, key residue interactions at binding sites, 
and structural diversity. From this refined library, we selected 
seven compounds for future in vitro biological evaluations using 
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their DS virtual screening scores. Docking analysis identified 
the compound ZINC13597767 (TV4) as the most promising 
candidate, demonstrating the most favorable interaction with 
the FOXM1 target. This compound achieved the lowest CDOCKER 
energy of −18.1145 kcal/mol, forming stable hydrogen bonds with 
ARG236 and TYR272, which were crucial for its strong binding 
affinity. Conversely, compound ZINC00001087 (TV5) displayed 
a highly unfavorable interaction, characterized by a positive 

CDOCKER energy of 30.7268 kcal/mol, indicating poor binding 
and potential steric clashes. Several other compounds, such as 
ZINC00039221 (TV3) and ZINC00031410 (TV6), also exhibited 
negative CDOCKER energies, and successfully formed hydrogen 
bonds with ARG236 and TYR272. These results underscore the 
critical role of these amino acid residues in stabilizing ligand 
binding and highlight their significance in the design of effective 
FOXM1 inhibitors (Table 6).

Table 6: Energy values and amino acid interactions of compounds combined with FOXM1.

Name Structure Compound CDOCKER energy (kcal/mol) H-bond

TV1

  

ZINC01556940 −11.939  

TV2

  

ZINC01556940 −1.9784 ARG236

TV3

  

ZINC00039221 −14.0238 ARG236, TYR272

TV4

  

ZINC13597767 −18.1145 ARG236, TYR272

TV5

  

ZINC00001087 30.7268 ARG236

TV6

  

ZINC00031410 −6.2727 ARG236, TYR272

TV7

  

ZINC02476372 −6.2727 ARG236, TYR272

Footnote: Negative CDOCKER energy values indicate favorable binding. H-bond interactions with key residues (ARG236, TYR272) are 
shown. TV5’s positive energy suggests unstable binding.

The results from the CMap and docking analyses collectively 
enhance the evaluation of small molecules for OC therapy. CMap 
analysis identified Trichostatin A and Vorinostat as promising 
candidates owing to their significant negative correlation with 
OC, indicating their potential as effective therapeutic inhibitors. 
Concurrently, docking analysis provided insights into the binding 
affinities of specific compounds to FOXM1, with ZINC13597767 
emerging as the most favorable candidate, as evidenced by its 
low CDOCKER energy and the formation of hydrogen bonds with 
crucial residues ARG236 and TYR272. This synergy between 

CMap’s disease correlation insights and the docking analysis’s 
binding potential assessments refines the selection of compounds, 
validating their suitability for further in vitro evaluation, and 
supporting their advancement in therapeutic development.

Discussion

Summary of Main Results

The primary objective of this study was to identify key driver 
genes in OC pathogenesis through a multi-omics approach. Our 
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main finding is the identification of 4,204 DEGs, from which 16 
were significantly associated with poor overall survival. Among 
these, the transcription factor FOXM1 emerged as the most critical 
oncogenic driver, demonstrating strong nuclear expression in 
90.9% of serous carcinomas compared to 9.1% in benign tissues. 
Secondary analyses confirmed the role of this gene set in cell cycle 
processes and identified ZINC13597767 as a promising FOXM1 
inhibitor through virtual screening.

Results in the Context of Published Literature

Our findings strongly align with and extend the work of 
TCGA network, which established the landscape of molecular 
alterations in high-grade serous OC [27]. The central role of 
FOXM1 we identified is consistent across diverse datasets [53] 
and is mechanistically supported by its known activation by 
mutant p53, a nearly universal event in this cancer subtype [28]. 
The overexpression of our identified hub genes (FOXM1, AURKB, 
CCNB1, CDK1) and their association with aggressiveness and 
chemoresistance have been individually reported [29]. However, 
our study integrates these findings into a cohesive network, 
positioning FOXM1 as a master regulator. While previous studies 
have suggested FOXM1’s diagnostic utility, our ROC analysis 
provides a quantitative assessment of its discriminatory power 
[30]. Furthermore, our virtual screening result for ZINC13597767 
is novel, though it is supported by the known efficacy of other 
HDAC inhibitors like vorinostat in suppressing FOXM1 activity 
[31].

Strengths and Weaknesses

A key strength of this study is the integrative multi-omics 
methodology, which combined DEG analysis, prognostic 
validation, functional enrichment, PPI network construction, and 
experimental wet-lab validation to robustly identify and prioritize 
FOXM1. This approach mitigates the risk of false discoveries 
common in single-platform analyses. The use of virtual screening 
to identify a novel putative FOXM1 inhibitor (ZINC13597767) 
is strength, providing a direct translational pathway for future 
research. The main weakness is the lack of comprehensive in 
vivo functional validation for FOXM1 and the top candidate 
compound. Furthermore, the study primarily focused on the high-
grade serous subtype, and the findings may not be generalizable 
to other OC histotypes (e.g., clear cell, mucinous), which have 
distinct molecular profiles and clinical behaviors [32]. The 
diagnostic specificity of FOXM1 alone remains variable, and the 
pharmacokinetics and potential toxicity of the identified inhibitor 
candidates remain to be fully characterized [33].

Implications for Practice and Future Research

The most impactful contribution of this study is the systematic 
prioritization of FOXM1 as a high-value master regulator and 
therapeutic target in OC, supported by a novel computational drug 
candidate. For clinical practice, measuring FOXM1 expression 
could enhance risk stratification and its integration with CA-125 

may improve early detection strategies [34]. For future research, 
the immediate priority is the in vitro and in vivo validation of 
ZINC13597767 to confirm its efficacy and safety as a FOXM1 
inhibitor. Subsequently, exploring its synergy with existing agents 
(e.g., PARP inhibitors, platinum chemotherapy) and mitotic kinase 
inhibitors (e.g., barasertib, dinaciclib) is warranted. Future work 
must also expand to non-serous subtypes to determine the pan-
OC applicability of this target. Finally, given emerging evidence 
that FOXM1 modulates the tumor immune microenvironment, 
investigating its inhibition in combination with immunotherapy 
presents a compelling and novel research direction.

Conclusion

In conclusion, our integrated analysis highlights FOXM1 as 
a central driver of OC pathogenesis, with profound diagnostic, 
prognostic, and therapeutic implications. Dysregulation of the cell 
cycle and p53 signaling pathways, coupled with the identification 
of novel small-molecule inhibitors, provides a strong foundation 
for targeted drug development. By bridging bioinformatics 
insights with translational research, this study offers a roadmap 
for improving OC outcomes, a disease that urgently requires 
innovative therapeutic strategies. This conclusion aligns with the 
growing body of research that recognizes FOXM1 as a therapeutic 
vulnerability across multiple tumor types, including OC. The 
convergence of pathway analysis, experimental validation, and 
drug screening echoes the strategy proposed in precision oncology 
frameworks [35] suggesting that such integrative approaches may 
accelerate clinical translation in high-burden cancers such as OC.
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