

Case Report Volume 23 Issue 2 - March 2022 DOI: 10.19080/JGWH.2022.23.556106

J Gynecol Women's Health Copyright © All rights are reserved by Priyanka Vishwakarma

Recurrent Pregnancy loss in Consanguineous family with two different variant identifications by Couple carrier screening

Priyanka Vishwakarma¹*, Ashish Dubey¹, Shashank Upadhyay², Amit Joshi², Deepika Kalo¹ and Vishal Kumar Mishra³

¹Department of Clinical Genomics, Redcliffe Lifetech Private Limited, Noida, India

²Department of Biotechnology, Invertis University, Bareilly, India

³Department of Bioinformatics, Redcliffe Lifetech Private Limited, Noida, India

Submission: February 14, 2022; Published: March 08, 2022

*Corresponding author: Priyanka Vishwakarma, Department of Clinical Genomics, Redcliffe Lifetech Private Limited, India

Abstract

We present a rare case of recurrent pregnancy loss associated with autosomal recessive mutation identified by Clinical Exome sequencing (Couple carrier testing Method). The Consanguineous Couple were facing recurrent pregnancy loss before 20 weeks of gestation since last 7 years of marriage. This type of pregnancy loss occurs in approximately 5% of reproductive-aged women, her hormone level, ultrasound, and the biochemical test report were normal. We report two autosomal recessive mutations in two different genes responsible for fetus growth during pregnancy identified in couple and this mutation has been confirmed by Sanger validation method. Study showed the utility of Clinical Exome sequencing method in couple carrier screening to take proper decision in future family planning. Ultimately, the consanguineous marriages are really stigma in our society as a mother of rare disease and responsible for the pregnancy losses as well.

Keywords: Recurrent Pregnancy loss; Abortions; Mutation; Carrier Screening

Abbreviation: RPL: Recurrent Pregnancy Loss; ACOG: American College of Obstetrics and Gynaecology; ACMG: American College of Medical Genetics; SMA: Spinal Muscular Atrophy; ASRM: American Society for Reproductive Medicine; CMA: Chromosomal Microarray; PCS: Preconception Carrier Screening; CF: Cystic Fibrosis; FXS: Fragile X Syndrome; ECS: Expanded Carrier Screening; NGS: Next-Generation Sequencing; PKD: Polycystic kidney disease

Introduction

Spontaneous pregnancy loss is the very common problem of pregnancy. Almost 70% of human conceptions fail to achieve the viability, with almost 50% of all the pregnancies ending in the miscarriage before the clinical acknowledgement of a missed period or the presence of embryonal heart activity [1,2]. Recurrent pregnancy loss (RPL) is less common, taking place in about one out of 100 pregnant women [3]. it has been over all defined as the three or more consecutive pregnancy losses before 20 weeks of the gestational age [2].

An estimated 1% of the couples attempting pregnancy suffer three or more consecutive losses, and as many as 5% have two or more consecutive losses [4]. Causes of RPL can be categorized as genetic abnormalities, hormonal and metabolic disorders, uterine anatomical aberrations, infectious causes, autoimmune disorders, thrombophilic disorders, autoimmune causes, and idiopathic. This latter group accounts for over 50% of the cases [5]. Approximately 50% of the first trimester miscarriages are due to the chromosomal abnormalities in the foetus. Till date, the Trisomies are the most detected abnormalities it is reported approx. 61.2%, followed by triploidies approximately 12.4% cases, monosomy X (10.5%), tetra ploidies (9.2%) and the structural chromosomal abnormalities (4.7%). Most aneuploidies are lethal (Death causing) and the viable trisomies are constrained to only a few human chromosomes.

The most common human trisomy is the chromosome 21 (Down Syndrome). Humans are much abler to tolerate the extra sex chromosomes than extra autosomes. After Down Syndrome the most common human aneuploidy is Klinefelter's syndrome (47, XXY). On the other hand, cells seem to be particularly sensitive to losing chromosomes, since the only viable human monosomy involves the X chromosome (Turner's syndrome).

Most often the chromosomal rearrangements in either carrier are a major clinically recognized cause of the miscarriage and these studies are published in a different journal have shown the prevalence of the chromosomal incongruities that varies from 4% to 8% of the couples who are affected by at least two or three pregnancy damages [6-8] Recent recommendations supporting clinical intervention after only two consecutive spontaneous abortions when other features of pregnancy loss are present define a higher prevalence of one in 100 women.

These additional features include detectible fetal heart activity preloss; normal fetal chromosomal content; advanced maternal age; or couple subfertility (Practice Committee of the American Society for Reproductive Medicine 2008a) [9]. Uterine structural abnormalities, endocrinal abnormalities, infections, immunologic factors, metabolic or hormonal disorders, environmental factors, sperm quality, and maternal and paternal age have each been linked to RPL.

The standard RPL estimation presently incorporates the testing for the chromosomal translocations in each of the parent as well as the several maternal testing for endocrine (thyroid), autoimmune (lupus anticoagulant and antiphospholipid antibodies), anatomic (endometrial or uterine abnormalities), and, in some cases, single gene disorders (such as inherited thrombophilias) [10,11].

Despite the number of proposed etiologies, parental chromosomal abnormalities and complications resulting from the antiphospholipid antibody syndrome continue to be the only undisputed causes of RPL. It's reported in several literatures, that RPL is remains unexplained in 45% to 50% of patients [12]. In most of the cases, there is a poor prognosis that is far from bleak; researchers have shown that the overall possibility of live birth after RPL is 70% –75%, even in women with advanced maternal age [13, 14].

To the cause of these losses, Carrier screening programs were announced in the year 1970s to offer individuals for the opportunity to learn the likelihood that they could pass on an autosomal or X-linked condition to their offspring. Firstly, the carrier screening programs were used only with the ethnic groups who had relatively high incidence of certain conditions, such as ancestry-based screening for Tay–Sachs's disease in Ashkenazi Jewish communities and β thalassemia in Mediterranean populations [15,16].

The carrier screening testing in the prenatal or at the timing of preconception is suggested for a variety of the conditions based upon the ethnic background and family history. Certain autosomal recessive disease conditions are the more prevalent and reported in the individuals with the specific ancestry or specific to the certain population with their percentage of risk levels. Thus, the couples of the certain populations are at the increased risk for having the offspring with one of such type of conditions. Some of these conditions may be lethal in childhood or are related with significant morbidity.

002

For Cystic fibrosis the carrier screening is acclaimed by the American College of Obstetrics and Gynaecology (ACOG) for individuals at the stage of preconception and the prenatal periods regardless of ethnic background or the family history. ACOG's current recommendations indicates that the complete sequencing of the CFTR gene is not appropriate for the routine carrier screening, but carrier screening panels should include at least minimum of 23 most common mutations (ACOG 2017) [17].

It has been recommended by the American College of Medical Genetics (ACMG) and ACOG for the prenatal screening of spinal muscular atrophy (SMA) regardless of family history. Fragile X carrier screening is suggested for women with a family history of fragile X-related disorders, unexplained mental retardation or developmental delay, autism, or premature ovarian insufficiency [18]. Currently Fragile X carrier screening in the general population is not routinely recommended. Individuals of Ashkenazi Jewish descent have an increased risk to have a child with certain autosomal recessive conditions.

The American College of Medical Genetics (ACMG) recommends for the carrier screening for cystic fibrosis, Canavan disease, familial dysautonomia, Tay-Sachs's disease, Fanconi anemia (Group C), Niemann-Pick (Type A), Bloom syndrome, mucolipidosis IV, and Gaucher disease for all Ashkenazi Jews who are pregnant or considering pregnancy. These disorders all have significant health impact on an affected infant.

RPL testing the American College of Obstetricians and Gynaecologists (ACOG) and the American Society for Reproductive Medicine (ASRM) both are suggested for the chromosomal analysis via karyotyping when a couple has a history of RPL. Karyotype analysis can be performed on either the products of conception or on both parents when a history of RPL is identified. ACMG stated chromosomal microarray (CMA) should not be used to evaluate the parents with the history of RPL, as this technology cannot detect the stable chromosomal rearrangements.

Developing evidence shows that the several advantages of the increasing clinical sensitivity to the Mendelian recessive diseases in the genetic screening of the approaching parents (Preconception carrier screening, PCS). Notably, populationbased incorporation of parallel screening for cystic fibrosis [CF], fragile X syndrome [FXS], and spinal muscular atrophy [SMA] in routine preconception and early pregnancy programs results in a combined affected pregnancy risk comparable to the risk for Down syndrome [19].

Advancement in the sequencing technology and decreases in the cost [20] have made the expanded carrier screening (ECS) reasonable and inexpensive. In 2011, after 14 years of cumulative experience in gene-by-gene carrier screening, screening tests were first expanded to simultaneously test for 448 Mendelian recessive diseases using next-generation sequencing (NGS) technology [21]. Subsequently, ECS has been implemented in the several populations, and the power of the NGS and expanded panels increases detection rates compared with traditional tests [22–25]. Expanded carrier screening does influence reproductive decisions for a high percentage of at-risk couples.

Current documents of guidance do not specify that which conditions should be involved on an expanded panel, but most of them recommended at least some specific conditions such as CF and spinal muscular atrophy [26-28]. There is also consensus among the professional societies that expanded carrier screening panels should focus on the childhood-onset situations that are likely to have a significant impact on the child's quality of life [29-33].

In addition to age of onset and clinical impact, most guidance documents also include criteria related to the scope of the condition (including frequency of the gene and penetrance of the phenotype) and the extent to which parents and/or providers can act in response to a positive finding. However, professional societies vary in terms of the specificity of their lists of considerations and/ or criteria, as well as the details of their guidance.

Case Report

Genomic DNA is extracted from the blood samples of the couple presented with the history of recurrent pregnancy loss. who presented for genetic counselling because of three recurrent miscarriages, and they have been married since 7 years. It is the

Table 1: List of genes analysed in Couple carrier screening test

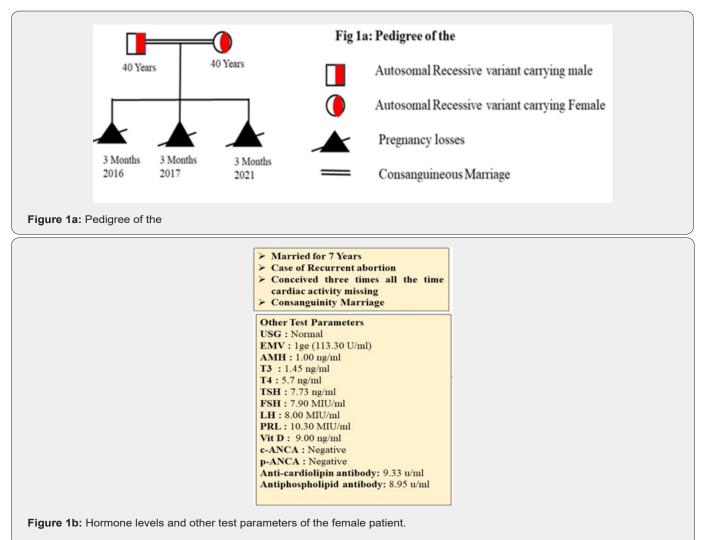
first study in our laboratory. Informed consent was obtained from couple. For NGS, patient DNA corresponding to exonic regions is captured using Agilent targeted Exome hybridization probes. Captured DNA is sequenced by using the Thermofisher's semiconductor sequencing platform Ion-S5 using 200 bp reads. The following quality control metrics are generally achieved in >97% of target bases are covered at >20x, mean coverage of target bases \sim 100x.

Data analysis and the variant interpretation has been completed by the grouping of torrent suite software and our internal bioinformatics pipeline. Variants are filtered and interpreted by using the curated databases such as Clinvar, OMIM, dbSNP etc. and common, benign, and low-quality variants are filtered from analysis. All differences from the reference sequences (sequence variants) are assigned to one of five interpretation types (Pathogenic, Likely Pathogenic, Variant of Uncertain Significance, Likely Benign and Benign) as per ACMG Guidelines [34].

All sequence variants in apposite gene regions will be detected and interpreted, but only Pathogenic and Likely Pathogenic variants will be included in the test report. Rare and undocumented synonymous variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing. Likely benign and benign variants are not included for any sections in report.

Table 1. LISI	or genes analyse	ed in Couple carrie	erscreening	j iesi.					
ABCB11	ASL	CLN8	DPYD	GALE	HEPACAM	LMF1	NEB	PRPS1	SLC45A2
ABCC2	ASPA	CLRN1	DUOX2	GALK1	HEXA	LRPPRC	NPC1	PTS	SLC4A11
ABCC6	ASS1	CNGB3	DUOXA2	GALT	HEXB	MAN2B1	NPC2	PYGM	SLC5A5
ABCD1	ATM	COL4A3	DYSF	GAMT	HFE	MAT1A	NPHS1	RAB23	SLC7A7
ACADM	ATP7A	COL4A4	EDA	GBA	HFE2	MCCC1	NPHS2	RAPSN	SLC7A9
ACADS	ATP7B	COL4A5	EIF2B5	GBE1	HGD	MCCC2	NR2E3	RDH12	SMPD1
ACADVL	AVP	COL7A1	EMD	GCDH	HGSNAT	MCEE	OPA3	RFX5	SRD5A2
ACAT1	BBS1	CPT1A	ETFA	GCK	HLCS	MCOLN1	ОТС	RFXANK	STAR
ACOX1	BBS10	CPT2	ETFB	GDF5	HMGCL	MEFV	PAH	RFXAP	SUMF1
ACTA1	BBS12	CRB1	ETFDH	GJB1	HOGA1	MFSD8	РС	RLBP1	TFR2
ADA	BBS2	СТН	ETHE1	GJB2	HPS1	MKS1	PCCA	RS1	TG
ADAMTS2	BCKDHA	CTNS	EVC	GLA	HPS3	MLC1	PCCB	RTEL1	TGM1
AGA	BCKDHB	CTSK	EVC2	GLB1	HSD17B3	MMAA	PDHA1	SACS	ТН
AGL	BCS1L	CYBB	EYS	GLDC	HSD17B4	MMAB	PDHB	SEPSECS	TMEM216
AGXT	BLM	CYP11B1	F11	GLIS3	HSD3B2	ММАСНС	PEPD	SERPINA1	TPO
AHCY	BRIP1	CYP11B2	F2	GM2A	IDS	MMADHC	PEX1	SGCA	TPP1
AIRE	BTD	CYP17A1	F5	GNE	IDUA	MMP1	PEX10	SGCB	TRIM32
ALDH3A2	CAPN3	CYP19A1	F8	GNMT	IKBKAP	MPI	PEX2	SGCG	TSHB
ALDH4A1	CBS	CYP1B1	F9	GNPTAB	IL2RG	MPL	PEX6	SGSH	TSHR
ALDH7A1	CDH23	CYP21A2	FAH	GNS	IVD	MPV17	PEX7	SLC12A3	TTPA
ALDOB	CEP290	CYP27A1	FANCA	GP1BA	IYD	MTHFR	PFKM	SLC12A6	TYR
ALG6	CFTR	CYP27B1	FANCC	GP9	KCNJ11	MTM1	PHGDH	SLC17A5	UGT1A1
ALPL	СНМ	DBT	FANCG	GPR56	LAMA2	MTRR	PKHD1	SLC22A5	USH1C
АМН	CHRNA1	DCLRE1C	FH	GRHPR	LAMA3	MTTP	PMM2	SLC25A13	USH2A

AMHR2	CHRND	DDAH1	FKRP	GUCY2D	LAMC2	MUT	POLG	SLC25A15	VPS13A
AMPD1	CHRNE	DHCR7	FKTN	HADHA	LCA5	MVK	POMGNT1	SLC26A2	VPS13B
AMT	CHRNG	DHDDS	FMR1	HAL	LDLR	MY015A	POMT1	SLC26A3	VPS45
AR	CIITA	DLD	G6PC	HAX1	LDLRAP1	MY07A	POR	SLC26A4	WISP3
ARG1	CLN3	DMD	G6PD	HBA1	LHCGR	NAGLU	PPT1	SLC37A4	WNT10A
ARL13B	CLN5	DNAH5	GAA	HBA2	LIAS	NBN	PROM1	SLC39A4	WRN
ARSA	CLN6	DNAI1	GALC	HBB	LIFR	NDRG1	PROP1	SLC3A1	


In this study, we tested a panel of over ~300 genes that are associated with around 400 disorders inherited in an autosomal recessive (some X-linked recessive) manner and are mostly very severe and are childhood onset diseases (Table 1). Carrier screening is envisioned for an individual at a reproductive age as a preconception or the prenatal screening to determine if he/she carries one or more mutations for the diseases.

These mutations were designated based on the current American College of Medical Genetics (ACMG) and American College of Obstetrics and Gynaecology (ACOG) commendations, as well as a thorough review of scientific literature and the assessment of their clinical utility. This test is not intended for

004

diagnostic testing of children suspected of having any of the diseases in the panel. Rare false negatives may occur in the setting of bone marrow transplantation, blood transfusion, and genetic variants such as other point mutations and deletions.

The studied couple had the previous history of three recurring abortions with the missing heartbeat in fetus. These couple married for 7 years in the same family (Consanguineous marriage) (Figure 1a). Pedigree of the family showed the 1st degree of consanguinity. After enrollment of this couple, we have performed several hormonal and biochemical tests. Result of the biochemical test has been mentioned in Figure 1b.

All the test reports were normal, and the ultrasound report was also normal. But all the time this couple faced the pregnancy losses at time of first trimester (3rd month) (Figure 1a). After getting done all the tests, we have enrolled this couple for the couple carrier screening test to know the cause of pregnancy loss. mentioned in the Table 1. The result of this test indicated this couple is carrier for the two different gene in the two different variants (Table 2&3). The couple found to be carrier of variant c.997A>G; p. Lys333Glu (ACADM gene) and c.732G>C; p. Trp244Cys (PKHD1 gene) (Table 3). All the variant details of identified mutation in couple is mentioned in the table 3.

Table 2: Disease information and their risk factors reported in different population.

The genes we included in this couple carrier screening test is

005

Gene	Disease Name	Ethnicity	Detection Rate	Carrier Fre- quency	Residual Risk
	Acyl-CoA dehydrogenase,medium chain,	European Caucasian Saudi	>80%	1 in 50	< 1 in 250
ACADM	deficiency of	Arabian	95%	1 in 68	< 1 in 1300
ACADVL	Acyl-CoA dehydrogenase, very long-chain, defi- ciency of	General Population	> 18%	< 1 in 87	< 1 in 100
ADA	Severe combined immunodeficiency due to ADA deficiency	General Population	5%	1 in 500	< 1 in 525
AGA	Aspartylglucosaminuria	Finnish	98%	1 in 69	< 1 in 3000
AGL	Glycogen storagedisease IIIa, IIb	Caucasian North African Jewish	19% all GSD III, 51% GSD IIIb	1 in 159 1 in 37	1 in 196 allGSD III, < 1 in 300 GSDIIIb
			>99%		< 1 in 3500
AGXT	Hyperoxaluria,primary, type 1	General Population	>33%	< 1 in 159	< 1 in 236
AIRE	Autoimmune polyendocrinopathy syndrome, type I, withor without reversible	Finnish Iranian Jewish	89%	1 in 80	1 in 715
	metaphyseal dysplasia	,,-	>99%	~ 1 in 48	< 1 in 4500
ALPL	Hypophosphatasia	JapaneseManitoba	52%	< 1 in 159	< 1 in 300
ALPL		Mennonite	>90%	1 in 25	< 1 in 246
			>70%	1 in 100	<1 in 333
ARSA	Metachromaticleukodystrophy	Austrian European Cauca- sian Habbanite Jewish	44%	1 in 100	1 in 179
			>50%	1 in 5	< 1 in 9
		Dutch	56%	1 in 133	1 in 300
ASL	Argininosuccinicaciduria	Saudi Arabian	52%	1 in 80	1 in 165
ACDA	Conquer discos	Ashkenazi Jewish General	98%	1 in 55	1 in 2715
ASPA	Canavan disease	Population	50%	< 1 in 100	< 1 in 200
		Amish Costa Rican North African	99%	Unknown 1 in 100	< 1 in 500
ATM	Ataxia-telangiectasia	Jewish	56% 97%	1 in 82	1 in 227 1 in 2700
		Norwegian	57%	1 in 100	1 in 232
ATP7B	Wilson disease	Ashkenazi Jewish Euro- pean	67%	1 in 100	1 in 300
		Caucasian	40%	1 in 87	1 in 145

How to cite this article: Priyanka V, Ashish D, Shashank U, Amit J, Deepika K, et al. Recurrent Pregnancy loss in Consanguineous family with two different variant identifications by Couple carrier screening. J Gynecol Women's Health 2022: 23(2): 556106. DOI: 10.19080/JGWH.2022.23.556106

		General		< 1 in 250	
BBS1	Bardet-Biedl syndrome 1		65%		< 1 in 700
		Population		(BBS1 only)	
BBS10	Bardet-Biedl syndrome 10	General Population	48%	< 1 in 250 (BBS10	< 1 in 500
				only)	
				< 1 in 500 (BBS12	
BBS12	Bardet-Biedl syndrome 12	Caucasian General Popu-	27%	only)	< 1 in 680
		lation	19%	< 1 in 500 (BBS12	< 1 in 600
				only)	
BCKDHA	Maple syrup urine disease, type Ia	Mennonite	99%	< 1 in 7	< 1 in 568
BCKDHB	Maple syrup urine disease, type Ib	Ashkenazi Jewish	99%	1 in 80	1 in 7900
BCS1L	Bjornstad syndrome	Finnish	>99%	1 in 109	< 1 in 10,000
		Ashkenazi Jewish	97%	1 in 107	1 in 3520
BLM	Bloom syndrome	European Japanese	40%	Unknown Un- known	< 1 in 250
			44% 58%	1 in 100	< 1 in 250 1 in 246
			58% 76%	1 in 100	1 in 246
CAPN3	Muscular dystrophy, limb-girdle, type 2A	Bulgarian Croatian Italian (Northeastern) Russian	38%	1 in 163	1 in 263
		Turkish	45%	< 1 in 100	< 1 in 180
			35%	1 in 100	1 in 160
			70%	1 in 128	< 1 in 400
CBS	Homocystinuria, B6- responsive and nonresponsive types	Irish Norwegian Qatari	75%	1 in 41	< 1 in 150
			>92%	< 1 in 22	< 1 in 260
CDH23	Deafness	General Population	9%	~1 in 134	< 1 in 147
	Bardet-Biedl syndrome	Northern			
CEP290	14	European	48%	~ 1 in 224	1 in 430
	14	European	77%	1 in 61	1 in 262
		African American Ashke-	99%	1 in 24	1 in 2301
CFTR	Cystic Fibrosis	nazi Jewish Asian	55%	1 in 94	1 in 205
		Caucasian Hispanic	92%	1 in 25	1 in 301
			83%	1 in 58	1 in 336
СНМ	Choroideremia	Finnish	90%	< 1 in 5000	< 1 in 57000
CLN5	Ceroid lipofuscinosis,	Finnish	94%	1 in 100	< 1 in 1700
GLINJ	neuronal, 5	1 11111311	7770	1 111 100	× 1 III 1/00
CLNC	Ceroid lipofuscinosis,	Dentry	000/	1 := 120	1 in (00
CLN6	neuronal, 6	Portuguese	80%	1 in 139	< 1 in 600
				*	

	Ceroid lipofuscinosis,				
CLN8	neuronal, 8	Finnish	99%	1 in 135	< 1 in 13,000
CLDN4	Retinitis pigmentosa	Ashkenazi Jewish	92%	1 in 140	< 1 in 13000
CLRN1	61	Finnish	95%	1 in 100	1 in 1981
		European Pingelapese	83%	1 in 123	< 1 in 700
CNGB3	Achromatopsia 3	(Micronesian)	99%	1 in 3	< 1 in 189
CPT1A	CPT deficiency, hepatic, type IA	Hutterite	95%	1 in 16	< 1 in 300
CDT2	Carnitinepalmitoyltran	General	× F00/	I I a las a com	1 in 500
CPT2	sferase II deficiency	Population	>50%	Unknown	< 1 in 500
		French Canadian General Population (US)	54%	1 in 39	1 in 84
CTNS	Cystinosis, nephropathic	Italian	62% 17%	1 in 159 1 in 159	1 in 416
		General	1/70	1 11 137	1 11 1 7 1
СТЅК	Pycnodysostosis	Population	Unknown	Rare	< 1 in 380
		Brazilian Canadian Menno-	87%	< 1 in 112	< 1 in 850
CYP17A1	17,20-lyase deficiency	nite and Dutch Freislander	92%	< 1 in 112	< 1 in 1300
		Chinese	32%	< 1 in 112	< 1 in 165
CYP27A1	Cerebrotendinousxant homatosis	Caucasian	9%	1 in 115	1 in 127
DCLRE1C	Omenn syndrome	Navajo and Apache (Atha- bascan- speaking)	98%	1 in 23	< 1 in 1000
DLD	Dihydrolipoamide dehydrogenase deficiency	Ashkenazi Jewish	95%	< 1 in 80	< 1 in 1500
DPYD	Dihydropyrimidine dehydrogenasedeficiency	General Population	52%	~ 1 in 51	~1 in 104
ETFA	Glutaricaciduria, type IA	European Caucasian	25%	Very rare	< 1 in 500
ETFDH	Glutaricaciduria, type IC	European Caucasian	17%	Very rare	< 1 in 500
	Ethylmalonic	General			
ETHE1	encephalopathy	Population	11%	Very rare	< 1 in 500
		Ashkenazi Jewish	95%	1 in 11	< 1 in 200
F11	Factor XI deficiency	General Population	12%	1 in 500	1 in 569
FANCC	Fanconi anemia, complementationgroup C	Ashkenazi Jewish	99%	1 in 89	1 in 8801

FANCG	Fanconianemia,	BrazilianJapanese	99%	Very rareVery	< 1 in 1000
	complementationgroup G		65%	rare	< 1 in 1000
FKTN	Cardiomyopathy,	Ashkenazi Jewish	99%	1 in 144	1 in 14179
FKIN	dilated, 1L	Asiikenazi jewisii	99%		1 In 14179
			99%	1 in 71	1 in 7022
		Ashkenazi JewishCau-	60%	1 in 159	1 in 395
0.000		casian Chinese Hispanic	80%	1 in 159	1 in 789
G6PC	Glycogen storagedisease Ia	Japanese	<54%	1 in 159	< 1 in 344
		Korean	90%	1 in 159	< 1 in 1577
			75%	1 in 159	1 in 631
	Glycogen storage	African American	43%	1 in 60	1 in 104
GAA	disease II	Dutch	32%	1 in 100	1 in 147
		EuropeanCaucasian	22%	1 in 159 Un-	1 in 191
GALC	Krabe disease	Japanese	57%	known	< 1 in 350
		Ashkenazi JewishGeneral	87.5%	1 in 127	< 1 in 1000
GALT	Galactosemia				
		Population	~84%	1 in 87	< 1 in 500
GBA	Gaucher disease	Ashkenazi Jewish General Population	96%	1 in 15	1 in 354
		(non-Jewish)	70%	< 1 in 100	< 1 in 331
		Amish	99%	1 in 12	< 1 in 1000
GCDH	Glutaricaciduria, type I	Caucasian	>40%	1 in 112	< 1 in 187
			99%	1 in 20	< 1 in 1800
GNE	Nonaka myopathy	Iranian Jewish	73%		< 1 in 500
		Japanese Korean	80%	Unknown Un- known	< 1 in 500
	Hyperoxaluria,	European			
GRHPR	primary, type II	Caucasian	30%	1 in 500	< 1 in 715
HADHA	Trifunctional protein	Northern	71%	1 in 177	1 in 602
	deficiency	European			
		African American Indian	80%	< 1 in 8	1 in 38
HBB	Sickle cell anemia	Mediterranean Northern Spain	>45%	1 in 20	< 1 in 35
	Stone our anoma	(Seville)	>75%	1 in 7	1 in 24
		(Sevine)	80%	1 in 8	1 in 75
			0070	1 11 0	-
НЕХВ	Sandhoff disease, infantile, juvenile, and	Argentinian Creole	97%	1 in 183	< 1 in 6000

How to cite this article: Priyanka V, Ashish D, Shashank U, Amit J, Deepika K, et al. Recurrent Pregnancy loss in Consanguineous family with two different variant identifications by Couple carrier screening. J Gynecol Women's Health 2022: 23(2): 556106. DOI: 10.19080/JGWH.2022.23.556106

	Mucopolysaccharidosis	European			
HGSNAT	type IIIC (Sanfilippo C)	Caucasian	80%	< 1 in 300	< 1 in 1700
		Faroese General Popula- tion	Unknown 44%	1 in 51	< 1 in 51
HLCS	Holocarboxylasesynthetase deficiency	Japanese	42%	1 in 148 1 in 159	1 in 263 1 in 273
	HMG-CoA lyase	Iberian Peninsula	84%	Unknown	< 1 in 500
HMGCL	deficiency	Saudi Arabian	94%	< 1 in 50	< 1 in 800
	Hermansky-Pudlak			41.005	4.1. 2000
HPS3	syndrome 3	Ashkenazi Jewish	89%	1 in 235	< 1 in 2000
			35%	1 in 159	1 in 243
		European Caucasian General PopulationItalian	21%	1 in 159	1 in 200
IDUA	Mucopolysaccharidosis Ih/s	Moroccan	39%	1 in 159	1 in 259
		Scandinavian	92%	1 in 159	< 1 in 2000
			62%	1 in 159	1 in 416
ІКВКАР	Dysautonomia, familial	Ashkenazi Jewish	>99%	1 in 30	1 in 3000
IL2RG	Combined immunodeficiency, X- linked, moderate	General Population	19%	1 in 25,000	1 in 30,000
LAMA3	Epidermolysis bullosa, generalized atrophic benign	Pakistani	99%	Unknown	< 1 in 500
LAMC2	Epidermolysisbullosa, junctional, Herlitz type	Italian	33%	Unknown	< 1 in 500
LRPPRC	Leigh syndrome, French-Canadian type	French Canadian	95%	1 in 23	< 1 in 400
MCOLN1	Mucolipidosis IV	Ashkenazi Jewish	95%	1 in 96	<1 in 1900
MEFV	Familial Mediterranean fever	Armenian Ashkenazi Jew- ish Mediterranean North African	69%	< 1 in 5	< 1 in 14
		Jewish Turkish	12%	1 in 188	1 in 212
MKS1	Bardet-Biedl syndrome 13	European Finnish	55%	1 in 48	1 in 106
		German	47%	1 in 184	1 in 344
MLC1	Megalencephalic leukoencephalopathy with subcortical cysts	Libyan Jewish	>99%	1 in 40	< 1 in 4000
ММАА	Methylmalonic aciduria, vitamin B12- responsive	Caucasian	45%	Unknown	< 1 in 400
	aciauria, vitamin D12-responsive				

			54%		< 1 in 500
	Methylmalonicaciduria and homocystinuria, cblC	Chinese General Popula- tion Italian	65%	Very rare Very	< 1 in 500
MMACHC	type	Portuguese	75%	rare Very rare Very rare	< 1 in 500
		i oi tuguese	91%		< 1 in 500
	Congenital disorder of	General			
MPI	glycosylation, type Ib	Population	Unknown	Very rare	< 1 in 400
	Thrombocytopenia,congenital				
MPL	amegakaryocytic	EuropeanCaucasian	~30%	Unknown	< 1 in 500
	Mitochondrial DNA depletion syndrome 6				
MPV17	(hepatocerebral type)	Navajo	99%	1 in 20	1 in 1950
MTTP	Abetalipoproteinemia	Ashkenazi Jewish	75%	1 in 131	< 1 in 500
	Methylmalonic	African American	34%	Unknown	Unknown
MUT	aciduria		20%	Unknown	Unknown
	aciuuria	European Caucasian Hispanic	55%		
		-		Unknown Un- known	Unknown Un- known
		Japanese General Population	26%		
MY07A	Deafness	Moroccan	Unknown 85%	Unknown Un- known	Unknown Un- known
		Japanese	42%	1 in 200	1 in 345
NAGLU	Mucopolysaccharidosis type IIIB (Sanfilippo B)	Spanish Portuguese	38%	1 in 187	1 in 300
NBN	Nijmegen breakage	Factory Furences	85%	1 in 155	< 1 in 1000
INDIN	syndrome	Eastern European	03 %	1 11 155	< 1 III 1000
NED	Nemaline myopathy 2,		99%	4 : 400	4 : 40000
NEB	autosomal recessive	Ashkenazi Jewish		< 1 in 108	< 1 in 10000
NDC1	Niemann-Pick disease,	General	. 150/		4 4 9 9 9
NPC1	type C1, D	Population	>15%	>1 in 174	<1 in 200
NPHS1	Nephrotic syndrome,	Finnish	16%	1 in 46	1 in 54
NEIISI	type 1	FIIIIISII	10%	1 11 40	1 111 54
NDUC2	Nephrotic syndrome,	European	< 20%	Unknown	< 1 in 300
NPHS2	type 2	Israeli-Arab	55%	Unknown	< 1 in 500
DALL	Dharallastanunia	Caucasian	47%	1 in 50	1 in 94
PAH	Phenylketonuria	Irish	68%	1 in 34	1 in 104
PCCA	Propionicacidemia	Japanese	15%	1 in 66	1 in 78
РССВ	Dronioniossidariis	Japanese Spanish/Latin	32%	< 1 in 66	< 1 in 97
FULD	Propionicacidemia	American	50%	< 1 in 159	< 1 in 316
DEV4	Hateley along 4	General	. 000/	1 . 140	. 1
PEX1	Heimler syndrome 1	Population	>80%	1 in 140	< 1 in 700
DEV7	Peroxisome biogenesis	European	720/	< 1 in 150	
PEX7	disorder 9B	Caucasian	72%	< 1 in 159	< 1 in 550

How to cite this article: Priyanka V, Ashish D, Shashank U, Amit J, Deepika K, et al. Recurrent Pregnancy loss in Consanguineous family with two different variant identifications by Couple carrier screening. J Gynecol Women's Health 2022: 23(2): 556106. DOI: 10.19080/JGWH.2022.23.556106

		1			
PKHD1	Polycystic kidney disease 4, with or without hepatic	Caucasian	>20%	1 in 71	< 1 in 89
	disease	Finnish	75%	1 in 71	1 in 282
DMM	Congenital disorder of	European	F20/	4 . 54	4. 450
PMM2	glycosylation, type Ia	Caucasian	53%	1 in 71	1 in 150
	Mitochondrial recessive ataxia				
POLG	syndrome	Scandinavian	59%	1 in 100	1 in 244
		European	40%	Unknown	< 1 in 500
POR	Antley-Bixler syndrome	_	50%	Unknown Un-	< 1 in 500
		Caucasian General	60%	known	< 1 in 500
		Finnish General	98%	1 in 70	< 1 in 3000
PPT1	Ceroid lipofuscinosis, neuronal, 1	Population (US)	59%	< 1 in 139	< 1 in 300
DEC	Hyperphenylalaninemi		500/	1: 100	1 :
PTS	a, BH4-deficient, A	Chinese	70%	1 in 180	< 1 in 600
DUCH		Caucasian	>62%	1 in 159	< 1 in 400
PYGM	McArdle disease	Japanese	71%	Unknown	Unknown
RAB23	Carpenter syndrome	General Population Northern	67%	< 1 in 500	< 1 in 1500
RAD25	da pencer synarome	European	75%	< 1 in 500	< 1 in 2000
RDH12	Leber congenital amaurosis 13	General Population	40%	1 in 500	< 1 in 800
RLBP1	Bothnia retinal dystrophy, Retinitis punctataal-	Newfoundland, Northern	99%	Unknown 1 in 60 (Bothnia	< 1 in 500
	bescens	Swedish	94%	dystrophy)	< 1 in 900
		European Caucasian	35%	< 1 in 2500	< 1 in 3800
RS1	Retinoschisis	Finnish	95%	< 1 in 7500	< 1 in 150,000
		Brazilian	64%	1 in 250	1 in 694
SGCA	Muscular dystrophy, limb-girdle, type 2D	European Caucasian	23%	1 in 250	1 in 325
		Amish	99%	Unknown Un-	< 1 in 500
SGCB	Muscular dystrophy, limb-girdle, type 2E	General Population	(Indiana) Unknown	known Un-	< 1 in 500
		General		~ 1 in 350	1 in 350
SGCG	Muscular dystrophy, limb-girdle, type 2C	Population Gypsy/Romani	Unknown 99%	< 1 in 50	< 1 in 5000
	Mucopolysaccharidosis			× 1 III JU	× 1 III 3000
SGSH	type IIIA (Sanfilippo A)	Italian	29%	1 in 126	1 in 176
	Agenesis of the corpus				
SLC12A6	callosum with peripheral Neuropathy	French Canadian	99%	1 in 23	1 in 2200
	Sialic acid storage			1 in 100 to 1	
SLC17A5	disorder, infantile	Finnish	97%	in 200	< 1 in 3000
	disorder, infantile			in 200	

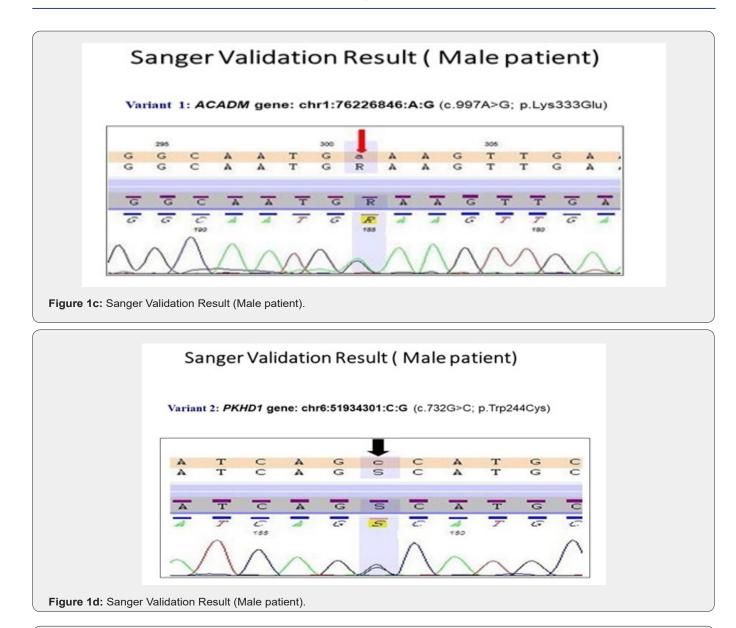
	Hyperornithinemia- hyperammonemia- homoci- trullinemia				
SLC25A15	syndrome	French Canadian	96%	1 in 20	1 in 472
SLC26A4	Deafness	European	~20%	~1 in 58	~1 in 73
JLCZOAT		Caucasian	2070	11150	1 11 75
SLC37A4	Glycogen storage	Caucasian	46%	1 in 350	< 1 in 650
	disease Ib				
SLC45A2	Albinism, oculocutaneous, type IV	Japanese	39%	1 in 146	1 in 239
		Finnish	99%	1 in 138	< 1 in 10,000
SLC7A7	Lysinuric proteinintolerance		44%	< 1 in 120	< 1 in 200
		Italian Japanese	64%	1 in 120	1 in 330
				1 in 90 (TypeA)	
			95%	1 in 159 (TypeB)	1 in 1780
SMPD1	Niemann-Pick disease,type A	Ashkenazi JewishGeneral Population North African Saudi Arabian	20%	Unknown(Type	1 in 200
SMPDI	Niemann-Pick uisease,type A		87%	B)	< 1 in 500
			85%	1 in 100 (Type	< 1 in 650
				B)	
TGM1	Ichthyosis, congenital	General Population	28%	1 in 224	< 1 in 300
TUNT	icitiiyosis, congenitai	Norwegian	80%	1 in 151	< 1 in 750
TMEM216	Joubert syndrome 2	Ashkenazi Jewish	99%	1 in 92	1 in 9122
		European Caucasian New- foundland	63%	1 in 139	< 1 in 350
TPP1	Ceroid lipofuscinosis, neuronal, 2		67%	1 in 53	1 in 159
			>50%	1 in 268	< 1 in 535
TTPA	Ataxia with isolatedvitamin E deficiency	Italian North African	>80%	1 in 159	<1 in 789
TYR	Albinism,	Chinese	11%	1 in 100	1 in 113
IIK	oculocutaneous, typeIA	Chinese	1170	1 111 100	1 111 113
UGT1A1	Crigler-Najjar	Dutch	34%	1 in 500	1 in 750
UUIIAI	syndrome, type I	Tunisian	84%	1 in 500	< 1 in 3000
USH1C	Deafness 18A	Acadian	99%	Unknown	< 1 in 500
		French Canadian	40%	< 1 in 100	< 1 in 280
USH2A	Usher syndrome, type2A	French Canadian	>55%	~ 1 in 125	< 1 in 275
5511 2 /1	concer synaronic, cype2re	General Population	>20%	~ 1 in 125	< 1 in 150
			> 99%	1 in 12	< 1 in 1000
VPS13B	Cohen syndrome	Amish (Ohio)Finnish	75%	1 in 120 - 1 in 160	< 1 in 480

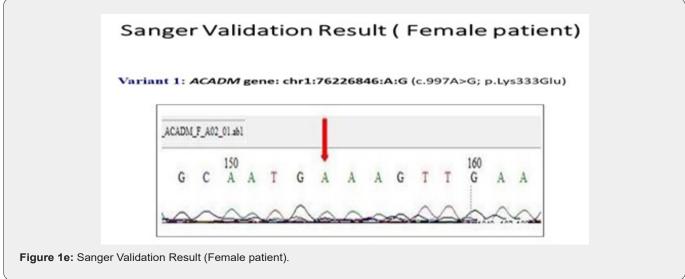
How to cite this article: Priyanka V, Ashish D, Shashank U, Amit J, Deepika K, et al. Recurrent Pregnancy loss in Consanguineous family with two different variant identifications by Couple carrier screening. J Gynecol Women's Health 2022: 23(2): 556106. DOI: 10.19080/JGWH.2022.23.556106

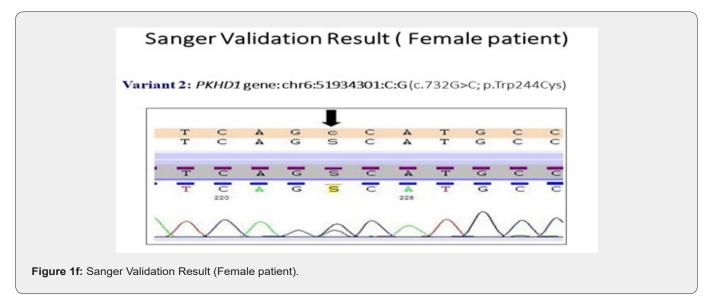
WRN WRNWerner syndromeCaucasian Iapanese29%1 in 224-1 in 315ABCC6Pseudoxantoma ElasticumEuropean Duch European28%1/80 to 1/100-1 in 100ALDH701Pseudoxantoma ElasticumDuch European Caucasian64%<1 in 260<1 in 720ALDH701Pyridoxine-Dependent Epilepsy CatacasianDuch European Caucasian64%<1 in 260<1 in 720CHRNE Congenital Myasthenic Syndrome, CHRNE- aso- clatedEuropean Caucasian-20%<1 in 50<1 in 4000CRB1CRB1-associated Retinal DystophiesEuropean Caucasian-20%-1 in 175<1 in 620CYP1B1CRB1-associated Retinal DystophiesEuropean Caucasian-10%<1 in 52<1 in 320CYP1B1Primary CongenitalGlaucomaEuropean Caucasian10%1 in 261 in 28CYP1B1Primary CongenitalGlaucomaFrench Caucasian10%1 in 261 in 28CYP1B1Primary Cllary Dyskinesia, DNAH5-associatedCaucasian15%-1 in 120<1 in 320CYP2B1Vitamin D-dependentRickets, Type IFrench Caucasian15%-1 in 120<1 in 320CYP2B1Primary Cllary Dyskinesia, DNAH5-associatedCaucasian15%-1 in 200<1 in 320CYP2B1Primary Cllary Dyskinesia, DNAH5-associatedGeneral Population34%Unknown<1 in 320CYP2B2Primary Cllary Dyskinesia, DNAH5-associatedGeneral Population34%Unknown<1 in 320CYP2B3Retinitis						
Image: section of the section of th	WRN	Werner syndrome	Caucasian	29%	1 in 224	< 1 in 315
ABCC6 Flasticum European 28% 1/80 to 1/160 <1 in 100			Japanese	78%	< 1 in 71	< 1 in 315
Instrume Instrume Instrume Instrume Instrume ALDH7A1 Pyridoxine-Dependent Epilepsy Dutch European Caucasian 64% <1 in 260 <1 in 320 CHRNE Congenital Myasthenic Syndrome, CIRNE- asso- ciated European/Gypsy >50% <1 in 20 <1 in 320 CRB1 CRB1-associated Retinal Dystrophies European Caucasian -20% -1 in 175 -1 in 220 CYP1B1 CRB1-associated Retinal Dystrophies European Caucasian -20% -1 in 175 <1 in 22 Primary Congenital Glaucoma -20% 1 in 62 <1 in 28 <1 in 28 OppsyTR0m) 9% 1 in 51 1 in 62 OPPR Orgentital Myasthenic Syndrome, CIRNE-associated CaucasianIndian -1 in 175 -1 in 220 CYP1B1 CRB1-associated Retinal Dystrophies European Caucasian 10% -1 in 175 <1 in 28 OPPR Primary Congenital Glaucoma CaucasianIndian 9% -1 in 176 <1 in 28 OPPR Vitamin D-dependentRichets, Type 1 French Canadian 38% -1 in 200 <1 in 28 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 33% -1 in 200 <1 in 300 DNAH6 Leukoencephalopathywith Vanishing White Matter		Pseudoxanthoma				
ALDH7A1 Pyridoxine-Dependent Epilepsy Caucasian 33% <1 in 260	ABCC6	Elasticum	European	28%	1/80 to 1/160	< 1 in 110
ALDH7A1 Pyridoxine-Dependent Epilepsy Caucasian 33% <1 in 260			Dutch European	64%	< 1 in 260	< 1 in 725
CHRNE Congenital Myasthenic Syndrome, CHRNE- asso- ciated European/Gypsy >50% <1 in 20 <1 in 39 CRB1 CRB1-associated Retinal Dystrophies European Caucasian -20% -1 in 175 >1 in 62 CYP1B1 CRB1-associated Retinal Dystrophies European Caucasian 9% North African 19% 1 in 51 1 in 62 CYP1B1 Primary CongenitalGlaucoma CaucasianIndian 8% North, 2% North 11 in 28 <1 in 28 CYP1B1 Primary CongenitalGlaucoma CaucasianIndian 9% 1 in 26 1 in 28 CYP1B1 Primary CongenitalGlaucoma Saudi Arabian Stovatian Gypsy(Rom) 10% 1 in 26 1 in 28 CYP27B1 Vitamin D-dependentRickets, Type I French Canadian >8% 1 in 200 <1 in 200 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 15% <1 in 200 <1 in 200 DNAH1 Leukoencephalopathywith Vanishing White Associated General Population 34% Unknown <1 in 500 EF2B5 Leukoencephalopathywith Vanishing White Matter General Population Unknown <1 in 500 <1 in 500	ALDH7A1	Pyridoxine-Dependent Epilepsy	_			-
CHRNE Congenital Myasthenic Syndrome, CHRNE- associated North African >44% Unknown <1 in 400						
Cited North African >44% Unknown <1 in 400	CHDNE	Congenital Myasthenic Syndrome, CHRNE- asso-	Luiopean/uypsy	23070	× 1 III 20	<1 III 57
CRB1 CRB1-associated Retinal Dystrophies European Caucasian -20% -1 in 175 ~1 in 220 CYP1B1 Primary Congenital Glaucoma Caucasian Indian 19% 1 in 51 1 in 62 CYP1B1 Primary Congenital Glaucoma Caucasian Indian 8% North, 17% South 1 in 26 1 in 28 CYP1B1 Primary Congenital Glaucoma Saudi Arabian Slovakian Gypsy(Rom) 10% 1 in 26 1 in 28 OP10 Primary Congenital Glaucoma Saudi Arabian Slovakian Gypsy(Rom) 10% 1 in 26 1 in 28 OP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 1 in 26 < 1 in 220 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated Caucasian 15% ~1 in 120 ~1 in 141 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated CaucasianPolish 17% ~1 in 200 ~1 in 240 DNAH5 Leukoencephalopathywith Vanishing White Matter General Population 34% Unknown <1 in 300 EYS Retinitis Pigmentosa,EYS-associated Moroccan Jewish Unknown Very rare <1 in 500 GP1BA Bernard-Soulier Syndrome, Type C <	CHKNE	ciated				
CYP1B1Image: constraint of the second se			North African	>44%	Unknown	< 1 in 400
CYP1B1 Primary CongenitalGlaucoma CaucasianIndian 8% North, 17% South <1 in 29 <1 in 32 Saudi Arabian Slovakian Gypsy(Rom) 10% 1 in 26 1 in 28 GYP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 1 in 26 <1 in 28 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caucasian 15% 1 in 200 <1 in 124 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 17% <1 in 200 <1 in 240 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 17% <1 in 200 <1 in 320 BNAH1 Sasociated CaucasianPolish 17% <1 in 200 <1 in 320 BIF2B5 Leukoencephalopathywith Vanishing White Matter General Population 34% Unknown <1 in 340 GYB4 Bernard-Soulier Syndrome, Type A1 General Population Unknown <1 in 500 GP9 Bernard-Soulier Syndrome, Type C General Population Unknown <1 in 500 GP9 Bernard-Soulier Syndrome, Type C General Population Unknown <1 in 500 GP9 Bernar	CRB1	CRB1-associated Retinal Dystrophies	European Caucasian	~20%	~1 in 175	~ 1 in 220
CYP1B1 Primary CongenitalGlaucoma CaucasianIndian 8% North, 17% South <1 in 29 <1 in 32 Saudi Arabian Slovakian Gypsy(Rom) 10% 1 in 26 1 in 28 GYP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 1 in 26 <1 in 28 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caucasian 15% 1 in 200 <1 in 124 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 17% <1 in 200 <1 in 240 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated CaucasianPolish 17% <1 in 200 <1 in 320 BNAH1 Sasociated CaucasianPolish 17% <1 in 200 <1 in 320 BIF2B5 Leukoencephalopathywith Vanishing White Matter General Population 34% Unknown <1 in 340 GYB4 Bernard-Soulier Syndrome, Type A1 General Population Unknown <1 in 500 GP9 Bernard-Soulier Syndrome, Type C General Population Unknown <1 in 500 GP9 Bernard-Soulier Syndrome, Type C General Population Unknown <1 in 500 GP9 Bernar						
CYP1B1 Primary CongenitalGlaucoma Saudi Arabian Slovakian Gypsy(Rom) 17% South 11 in 26 1 in 28 CYP27B1 Vitamin D-dependentRickets, Type I French Canadian >8% 10% 1 in 26 1 in 28 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated Caucasian 15% ~1 in 120 ~1 in 240 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated Caucasian 15% ~1 in 200 ~1 in 240 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated Caucasian 17% ~1 in 200 ~1 in 240 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated CaucasianPolish 17% ~1 in 200 ~1 in 240 DNAH5 Primary Cillary Dyskinesia, DNAH5-associated General Population 34% Unknown ~1 in 300 EIF2B5 Leukoencephalopathywith Vanishing White General Population Unknown Vurknown <1 in 500 EIF2B5 Retinitis Pigmentosa,EYS-associated Moroccan Jewish Unknown Unknown <1 in 500 GP1BA Bernard-Soulier Syndrome, Type C General Population Unknown Very rare <1 in 500 GP19 Berna			CaucasianIndian	19%	1 in 51	1 in 62
Saudi Arabian Slovakian (Sypsy(Rom) 10% 1 in 26 1 in 28 CYP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 1 in 26 <1 in 28 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caccasian 15% ~1 in 200 ~1 in 240 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caccasian Polish 17% ~1 in 200 ~1 in 240 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caccasian Polish 33% ~1 in 200 ~1 in 240 BNAH5 Secondard General Population 33% ~1 in 200 ~1 in 300 EIF2B5 Retinitis Pigmentosa, EYS-associated Moroccan Jewish Unknown Very rare <1 in 500 GP1BA Bernard-Soulier Syndrome, Type C General Population Unknown Very rare <1 in 500 GP99 Bernard-Soulier Syndrome, Type C General Population Unknown Very rare <1 in 500			Caucasianniaian	8% North,	< 1 in 29	< 1 in 32
Gypsy(Rom) 10% 11h 26 11h 26 11h 26 CYP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 11in 26 <1in 228 DNAH5 Primary Ciliary Dyskinesia, DNAH5-associated Caucasian 15% ~1 in 200 ~1 in 240 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated Caucasian Polish 17% ~1 in 200 ~1 in 240 DNAH1 Primary Ciliary Dyskinesia, DNAH5-associated Caucasian Polish 17% ~1 in 200 ~1 in 240 DNAH5 Seconcephalopathywith Vanishing White General Population 34% Unknown <1 in 300 EIF2B5 Retinitis Pigmentosa, EYS-associated Moroccan Jewish Unknown <1 in 300 GP1BA Bernard-Soulier Syndrome, Type C General Population Unknown Very rare <1 in 500 GP9 Bernard-Soulier Syndrome, Type C General Population Unknown Very rare <1 in 500	CYP1B1	Primary CongenitalGlaucoma		17% South		
CYP27B1 Vitamin D-dependentRickets, Type I French Canadian >89% 1 in 26 <1 in 228				10%	1 in 26	1 in 28
DNAH5Primary Ciliary Dyskinesia, DNAH5-associatedCaucasian15%~1 in 120~1 in 141DNAH5Primary Ciliary Dyskinesia, DNAH5-associatedCaucasian15%~1 in 200~1 in 240DNAH1Primary Ciliary Dyskinesia, DNAH1- associatedCaucasianPolish17% 33%~1 in 200~1 in 240DNAH1EIF2B5Leukoencephalopathywith Vanishing White MatterGeneral Population34%Unknown<1 in 500EIF2B5Retinitis Pigmentosa, EYS-associatedMoroccan JewishUnknownUnknown<1 in 340GP1BABernard-Soulier Syndrome, Type A1General PopulationUnknownVery rare<1 in 500GP9Bernard-Soulier Syndrome, Type CGeneral PopulationUnknownVery rare<1 in 500				99%	< 1 in 9	< 1 in 800
Image: constraint of the section of	CYP27B1	Vitamin D-dependentRickets, Type I	French Canadian	>89%	1 in 26	< 1 in 228
Image: constraint of the section of						
Image: constraint of the section of	DNAH5	Primary Ciliary Dyskinesia, DNAH5-associated	Caucasian	15%	~1 in 120	~1 in 141
DNA11associatedCaucasianPolish33%~ 1 in 200~1 in 300EIF2B5Leukoencephalopathywith Vanishing White MatterGeneral Population34%Unknown<1 in 500						
Image: constraint of the second sec		Primary Ciliary Dyskinesia, DNAI1-		17%	~ 1 in 200	~ 1 in 240
EIF2B5MatterGeneral Population34%Unknown<1 in 500	DNAI1	associated	CaucasianPolish	33%	~ 1 in 200	~1 in 300
EIF2B5MatterGeneral Population34%Unknown<1 in 500		Laukaancanhalanathuwith Vaniahing Mr. 1				
EYSRetinitis Pigmentosa,EYS-associatedMoroccan JewishUnknownUnknown<1 in 34	EIF2B5		General Population	34%	Unknown	< 1 in 500
GP1BA Bernard-Soulier Syndrome, Type A1 General Population Unknown Very rare < 1 in 500		Matter				
GP9 Bernard-Soulier Syndrome, Type C General Population Unknown Very rare < 1 in 500	EYS	Retinitis Pigmentosa,EYS-associated	Moroccan Jewish	Unknown	Unknown	< 1 in 34
GP9 Bernard-Soulier Syndrome, Type C General Population Unknown Very rare < 1 in 500						
	GP1BA	Bernard-Soulier Syndrome, Type A1	General Population	Unknown	Very rare	< 1 in 500
GPR56 Bilateral Frontoparietal Polymicrogyria (BFPP) General Population Unknown Unknown < 1 in 500	GP9	Bernard-Soulier Syndrome, Type C	General Population	Unknown	Very rare	< 1 in 500
General Population Unknown <1 in 500	CDDFC	Dilataral Frontononiatal Dahmiana mia (DEDD)	Concern Develoption	University	Universit	< 1 in 500
	GPR56	Bilateral Frontoparletal Polymicrogyria (BFPP)	General Population	Unknown	Unknown	< 1 in 500

LDLRAP1	Familial Hypercholesterolemia, LDLRAP1 associated	Sardinian	54%	< 1 in 100	< 1 in 200
MTRR	Homocystinuria, cblE type	European	60%	Very rare	< 1 in 500
NDRG1	Charcot-Marie-Tooth Disease, Type 4D (CMT4D)	Gypsy/Romani	>99%	1 in 11	< 1 in 989
РС	Pyruvate Carboxylase Deficiency	Canadian Indian General Population	> 99% 13%	1 in 10 1 in 250	< 1 in 850 1 in 288
PEPD	Prolidase Deficiency	Druze	67%	1 in 21	1 in 62
RAPSN	Congenital Myasthenic Syndrome, RAPSN- associated	General Population	70%	Unknown	< 1 in 500
SACS	Autosomal Recessive Spastic Ataxia	Northeastern Quebec	95%	1 in 22	1 in 431
SLC25A13	Citrin Deficiency	Japanese	>30%	1 in 70	< 1 in 100
WISP3	Progressive PseudorheumatoidDysplasia (PPD)	Middle Eastern	~57%	Unknown	< 1 in 500
WNT10A	Odonto-onycho- dermal dysplasia/Schopf-Schulz- Passarge Syndrome	General Population	>36%	Unknown	< 1 in 500

Table 3: Carrier screening finding (Variant Details) of the couple is mentioned in the below table.


Disease	Male	Female
Acyl-CoA dehydrogenase, medium chain, deficiency of (OMIM: 201450)	CARRIER Gene: ACADM Variant Location: chr1:76226846: A: G c.997A>G p.Lys333Glu Classification: Pathogenic	CARRIER Gene: ACADM Variant Location: chr1:76226846: A: G c.997A>G p.Lys333Glu Classification: Pathogenic
Polycystic kidney disease 4, with or without hepatic disease (OMIM: 263200)	CARRIER Gene: PKHD1 Variant Location: chr6:51934301:C: G c.732G>C p.Trp244Cys Classification: VUS	CARRIER Gene: PKHD1 Variant Location: chr6:51934301:C: G c.732G>C p.Trp244Cys Classification: VUS


Both the patients (Husband and Wife) are the carriers of same condition which follow autosomal recessive mode. Combining these results and keeping in view the clinical history, clinician correlated the findings. Genetic counselling has been given to the


0014

couple to discuss the potential clinical or reproductive implications of this carrier screening result.

To validate the couple carrier screening results, we have also done Sanger Sequencing (Figure 1 c, d, e, f).

Genetic testing is based upon the information, developments and testing techniques that are known today. Forthcoming research may reveal the changes in the interpretation of previously obtained genetic testing results. Certain genes may not be covered completely, and few mutations may be missed.

We sequence coding exons for each given transcript, plus ~ 10 bp of flanking non -coding DNA for each exon. Unless specifically indicated, test reports contain no information on about other portions of the gene, such as regulatory domains, deep intronic regions, uncharacterized alternative exons, chromosomal rearrangements, repeat expansions, epigenetic effects, and mitochondrial genome variants. Also, this analysis cannot detect single and multi-exon deletions and duplications.

A negative finding does not rule out the genetic diagnosis. These results should be used in the context of the available clinical findings and should not be used as the sole basis for treatment. As with all medical laboratories testing, there is a small chance that the laboratory could report inaccurate information. For example, the laboratory could report that a given genotype is present when in fact it is not. Any kind of laboratory error may lead to incorrect decisions regarding medical treatment and/or diet and fitness recommendations.

Discussion

Clinical Exome sequencing has transformed the molecular diagnosis of postnatal genetic diseases, but so far it has been used less often to study the reproductive related disorders. Here we provided an overview and the outcomes of the genomic sequencing for detecting the causes of RPL in a couple who suffering from recurrent pregnancy losses. This study includes couple carrier screening by clinical exome sequencing to look for the pathogenic sequence changes in the whole exome or in a preselected list of genes measured to be very important for the early embryonic development and the maintenance of pregnancy.

We developed an approach to diagnose rare autosomal recessive lethal disorders in a consanguineous couple with a history of multiple affected fetuses. The aim was to obtain a molecular genetic diagnosis and enable prenatal testing in the future pregnancies. The result showed that the couple detected with the carrier status of two variants in two different genes. These are ACADM and PKHD1 gene's variants causing a severe form of fetal Acyl-CoA dehydrogenase, medium chain, deficiency, and Polycystic kidney disease 4, with or without hepatic disease respectively.

These two genes (ACADM & PKDH1) different variants studies have already been reported in the different populations and ethnic groups [35-39]. For the gene ACADM the variants have been reported in European, Caucasian and the Saudi Arabian population with 80% to 95% detection rate. And the carrier frequency rate of this gene is 1 out of 50 cases (Table 2). The ACADM gene delivers the directions for the making an enzyme called medium-chain Acyl-CoA dehydrogenase (MCAD). This enzyme's function is inside the mitochondria (energy-producing center in cells). MCAD is very important for the fatty acid oxidation, which is the multistep process that breaks down (metabolizes) fats and converts them into the energy.

This MCAD is mandatory to metabolize a group of fats named the medium-chain fatty acids. These fatty acids are found in foods and body fat and are produced when larger fatty acids are metabolized. Fatty acids are a major source of energy for the heart and muscles. During periods without food (fasting), fatty acids are also an important energy source for the liver and other tissues. For the gene PKDH1 the variant has been reported mostly in the Caucasian and finish population with 20% to 75% detection rate. And the carrier frequency rate of this gene is 1 out of 71 case (Table 2). Polycystic kidney disease (PKHD1 related) causes cysts (fluid-filled sacs) to develop on the kidneys and restrict their ability to filter waste from the blood. PKD causes enlarged kidneys, which can lead to kidney failure. Cysts may also develop in other organs, including the liver, and other symptoms include underdeveloped lungs, heart valve problems and high blood pressure.

Symptoms are usually present from birth, though some people are more mildly affected than others. Treatment through dialysis and kidney transplant can reduce the seriousness of the condition. We conclude that these variants are highly responsible for the disease causing. Diagnosing the lethal foetal disorders has previously been very difficult because of the presence of the large number of potential genes, the phenotypic variability associated with many known genetic causes and the challenges of defining phenotype and pathology in a mid-gestation foetus.

Sequencing of the parental samples overcomes issues of limited quality or the quantity of foetal samples. A genetic diagnosis is must to confirms or identify the risk for future offspring and to get permission in the early prenatal diagnosis or preimplantation genetic diagnosis in future pregnancies.

This in turn reduces the anxiety associated with the waiting until mid-pregnancy for an ultrasound diagnosis and avoids the added suffering of a late cessation of the pregnancy period. This strategy is also valid to those disorders not detectable by the ultrasound diagnosis where late foetal demise or a neonatal death could not otherwise be predicted.

Conclusion

RPL is a condition which has both the psychological and the economical adverse effects on both for the couples and scientific experts dealing with these patients. Emphasizing the real reason behind these cases will be beneficial for both patients and the experts. This is very important to emphasize that the consanguineous marriages are so much responsible for these types of genetic disorders.

Acknowledgment

We are very grateful for patient's participation in this study and the clinician who has refereed this case at our company.

References

- Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood, PJ, et al. (1982) Early embryonic mortality in women. Fertil Steril 38(4): 447–453.
- Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, et al. (1988) Incidence of early loss of pregnancy. N Engl J Med 319(4): 189 -194.
- Alberman E (1988) The epidemiology of repeated abortion. In Early pregnancy loss: Mechanisms and treatment, (ed. Beard RW and Sharp F) Springer-Verlag, USA, pp. 9 -17.

- Sierra S, Stephenson MD (2006) Genetics of recurrent pregnancy loss. Semin. Reprod. Med 24(1): 17–24.
- 5. Stephenson MD, Salim D (1996) Frequency of factors associated with habitual abortion in 197 couples. Fertil Steril 66(1): 24-29.
- Niroumanesh S, Mehdipour P, Farajpour A, Darvish S (2011) A cytogenetic study of couples with repeated spontaneous abortions. Ann. Saudi. Med 31(1): 7779.
- Faeza AMED (2011) Chromosomal abnormalities as a cause of recurrent abortions in Egypt. Indian. J. Hum. Genet 17(2): 8284.
- Tunç E, Tanrıverdi N, Demirhan O, Süleymanova D, Çetinel N, et al. (2016) Chromosomal analyses of 1510 couples who have experienced recurrent spontaneous abortions. Reprod. Biomed Online 32(4): 414419.
- 9. Practice Committee of the American Society for Reproductive Medicine (2008) Fertil Steril 89(6): 1603.
- Sierra S, Stephenson MD (2006) Genetics of recurrent pregnancy loss. Semin. Reprod. Med 24(1): 17-24.
- 11. Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril 98(5): 1103–1111.
- Stephenson M, Kutteh W (2007) Evaluation and management of recurrent early pregnancy loss. Clin. Obstet. Gynecol 50(1): 132 –145.
- Clifford K, Rai R, Regan L (1997) Future pregnancy outcome in unexplained recurrent first trimester miscarriage. Hum. Reprod 12(2): 387 –389.
- Brigham SA, Conlon C, Farquharson RG (1999) A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum. Reprod 14(11): 2868–2871.
- Kaback MM (2000) Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. Eur. J. Pediatr 159 Suppl 3: S192–S195.
- Cao A, Saba L, Galanello R, Rosatelli MC (1997) Molecular diagnosis and carrier screening for beta thalassemia. JAMA 278(15): 1273–1277.
- 17. Elliott AM, Radecki J, Moghis B, Li X, Kammesheidt A, et al. (2012) Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. J Biomol Tech 23(1): 24-30.
- (2010) ACOG Committee Opinion No. 469: Carrier screening for fragile X syndrome. Obstet. Gynecol 116(4): 1008-1010.
- Coulam CB (1991) Epidemiology of recurrent spontaneous abortion. Am J Reprod Immunol 26(1): 23-27.
- National Human Genome Research Institute. The cost of sequencing a human genome, Vol 2016.
- 21. Callum JB, Darrell LD, Neil AM, Shannon LH, Elena EG, et al. (2011) Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med 3(65): 65ra4.
- 22. Kyle AB, Dale M, Kenny KW, Gregory JH, Kambiz K, et al. (2018) Systematic design and comparison of expanded carrier screening panels. Genet Med 20(1): 55-63.
- 23. Brett B, Susan H, Kinnari U, Philip M, Shai Carmi, et al. (2016) Expanded genetic screening panel for the Ashkenazi Jewish population. Genet Med 18(5): 522–8.
- 24. Julio M, Asan, Yuting Y, Trinidad A, Beatriz RI, et al. (2015) Comprehensive carrier genetic test using next-generation deoxyribonucleic acid sequencing in infertile couples wishing to conceive through assisted reproductive technology. Fertil Steril 104(5): 1286-1293.

- 25. Haque IS, Lazarin GA, Kang HP, Evans EA, Goldberg JD, et al. (2016) Modeled fetal risk of genetic diseases identified by expanded carrier screening. JAMA 316(7): 734-742.
- 26. Archibald AD, Smith MJ, Burgess T, Scarff KL, Elliott J, et al. (2018) Reproductive genetic carrier screening for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy in Australia: outcomes of 12,000 tests. Genet Med 20(5): 513-523.
- 27. Prior TW (2008) Carrier screening for spinal muscular atrophy. Genet Med 10(11): 840-842.
- 28. The Royal Australian and New Zealand College of Obstetricians and Gynecologists (RANZCOG) (2015) Prenatal screening and diagnosis of chromosomal and genetic conditions in the fetus in pregnancy.
- 29. Janice GE, Gerald F, James G, Anthony RG, Mary EN, et al. (2015) Expanded carrier screening in reproductive medicine—points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal Fetal Medicine. Obstet. Gynecol 125(3): 653-662.
- 30. (2017) Committee on Genetics. Committee opinion no. 690: carrier screening in the age of genomic medicine. Obstet Gynecol 129(3): e35-e40.
- Lidewij H, Pascal B, Davit C, Martina CC, Carla GVE, et al. (2017) Responsible implementation of expanded carrier screening. Eur J Hum Genet 25(11): 1291.
- 32. Douglas WR, Isabelle DB, Christine MA, Richard NB, Carla C, et al. (2016) Joint SOGC-CCMG opinion for reproductive genetic carrier screening: an update for all Canadian providers of maternity and reproductive healthcare in the era of direct-to consumer testing. J Obstet Gynaecol Can 38(8): 742-762.e3.

This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/JGWH.2022.23.556106

- **33**. Superior Health Council (SHC) Belgium (2017) Advisory report of the Superior Health Council no. 9240-expanded carrier screening in a reproductive context. Towards a responsible implementation in the healthcare system.
- 34. Richards S, Aziz N, Bale S, Bick D, Das S, et al. (2015) On behalf of the ACMG Laboratory Quality Assurance Committee, Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College Of Medical Genetics 17(5): 405- 424.
- 35. Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, et al. (2015) Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC Med Genet 16: 116.
- 36. Jiwon J, Hun GS, Yoo MK, Young MH, Ji KP, et al. (2020) Fatal outcome of autosomal recessive polycystic kidney disease in neonates with recessive PKHD1 mutations. Medicine (Baltimore) 99(19): e20113.
- 37. Pankaj T, Paul S, Aleksandar R (2014) Novel Mutation in the *PKHD1* Gene Diagnosed Prenatally in a Fetus with Autosomal Recessive Polycystic Kidney Disease. Case Reports In Genetics 2014: 6
- 38. Jing C, Na M, Xiaomeng Z, Wen L, Qianjun Z, et al. (2019) A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation. J Hum Genet 64(3): 207-214.
- 39. Sarah CG, Wehrle A, Villavicencio LP, Lausch E, Vetter B, et al. (2015) Medium-chain acyl-CoA dehydrogenase deficiency associated with a novel splice mutation in the ACADM gene missed by newborn screening. BMC Medical Genetics 16: 56.

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Tsext, Audio)
- Unceasing customer service

Track the below URL for one-step submission

https://juniperpublishers.com/online-submission.php