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NIS In Physiological Conditions and Its Role on 
Differentiated Thyroid Cancer Treatment

Nowadays, the sodium iodide symporter (NIS) is known 
to be key in the mechanism of iodide for the thyroid hormones 
synthesis process. NIS is a transmembrane protein expressed on 
the basolateral surface of thyroid follicular cells and is responsible 
for the active transport of iodine thanks to the sodium transport 
following the concentration gradient [1].  There have been 
many crucial advances to establish the current clinical scenario 
regarding thyroid pathologies. In 1940, 131I was administered for 
the first time as a hyperthyroidism treatment and in 1946 it was 
employed to treat thyroid cancer [2]. Moreover, over the years, NIS 
transporter has gained importance as a valuable imaging tool [3]. 
The choice of imaging modality employed in thyroid cancer varies 
upon the expression of sodium iodide symporter (NIS) in tumor 
cells and the availability of specific radioisotopes. Consequently, 
the selection varies depending on the specific radioisotope utilized. 
In DTC (Differentiated thyroid cancer), non-invasive single-photon 
emission computed tomography (SPECT) imaging technique can 
be utilized to detect photon-emitting radionuclides, including 
123/125/131I and 99mTcO4, which are transported intracellularly by 
NIS for medical diagnostic purposes.123I exhibits suitability as  

 
a radioisotope for SPECT imaging, like 99mTcO4. Nevertheless, 
99mTcO4 possesses a short half-life, yet it is not abundantly 
available. Within the context of SPECT imaging, the utilization of 
a radioisotope with a short half-life is advantageous. The sodium/
iodide symporter (NIS), it exhibits the capability to transport 
radioisotopes for medical-clinical purposes, such as 124I and [18F]-
tetrafluoroborate (18F-BF4-). 

But besides their radiotherapeutic effect it was demonstrated 
that these radioisotopes can be effectively detected utilizing 
the highly sensitive non-invasive imaging technique known as 
positron emission tomography (PET). The utilization of 124I for 
PET imaging entails enhanced sensitivity in comparison to single-
photon emission computed tomography (SPECT). However, it is 
worth noting that 124I emits both positrons and gamma radiation, 
thereby potentially compromising the quality of the acquired 
images. Consequently, significant attention has been devoted to 
the radioisotope 18F-BF4 as it stands out as the most promising 
candidate for imaging purposes. Its substantial positron emission 
capacity coupled with its low energy characteristics allows for the 
acquisition of high-quality three-dimensional PET images [4].
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NIS is also involved in the success of RAI therapy (Radioactive 
Iodine Therapy). 131I emits both beta particles and photons with 
higher energy levels compared to the radioisotopes, thereby 
resulting in inferior image quality when contrasted with other 
radioisotopes but a great effect as radiotherapy against the 
tumours.

In relation to 131I, it harnesses high-energy nuclear electron 
emissions that possess the capacity to effectively eliminate target 
cells. Nevertheless, this radiation exerts detrimental effects on 
DNA integrity, impacting not only the intended target cells but also 
the surrounding cellular milieu, culminating in the formation of 
DNA cross-links, breaks, and base lesions [5].

The introduction of NIS as a diagnostic treatment and/or 
monitoring tool in thyroid pathologies has entailed a magnificent 
advance in clinical practice. The idea of making use of this approach 
in non-thyroidal tissues offers the opportunity of applying all the 
expertise acquired over the years to numerous pathologies [6]. 
Considerable efforts were dedicated to the study and validation 
of different strategies to transfer functional NIS to other tissues. 
Herein, we provide a summary of some.

NIS In Viral Vectors. Viruses as Gene Transfer Agents 
for Non-Thyroidal Tumours

The use of viruses as viral vectors represents a highly 
promising strategy for antitumor therapy, transferred the desired 
therapeutic gene. A novel approach involves the targeted transfer 
of the NIS gene to non-thyroidal tumours, enabling the utilization 
of both NIS-guided imaging techniques and the therapeutic 
application of radioisotopes.  On the one hand, in many cases, 
replication-defective vectors were used. For those cases, even 
though they are unable to induce cell lysis, they allow for the 
insertion of therapeutic genes into the cellular genome. On the 
other hand, oncolytic viruses are highly promising as they possess 
distinct characteristics that enables the implementation of 
radio virotherapy, besides to the cell death induced by the viral 
replication [7].

One of the most widely studied oncolytic viruses for NIS gene 
transfer therapy strategies is measles virus (MV). An attenuated 
MV vaccine strain has been proven to have an extraordinary safety 
profile. Tumour selectivity of this virus is achieved through the 
CD46 specific binding to tumour cells [8]. The utilization of MV-
NIS as a reporter/therapy strategy has been successfully validated 
across several types of cancers. In a multiple myeloma xenograft 
mouse model, Russell’s team showed tumoral regression upon 
a single i.v. injection of MV-NIS when 131I was administered [9]. 
Moreover, prostate cancer xenografts derived from the LNCaP 
cell line were shown to be destroyed when MV-NIS was locally or 
systemically administered, and the therapeutic effect could also 
be enhanced with 131I administration [10]. Finally, for pancreatic 
cancer, the capacity of single-photon emission computed 
tomography/computed tomography (SPECT/CT) to determine the 

distribution pattern within the tumour and monitor the infection 
of oncolytic MV-NIS viruses [11]. 

MV is not the sole virus employed for NIS gene transfer, other 
oncolytic viruses have been explored with a similar approach. 
Vaccinia virus in combination with NIS (VV-NIS) and iodide 
administration has been shown to be effective in different cancer 
models such as in endometrial cancer [12] or gastric cancer [13]. 
Moreover, VV-NIS could be used as an imaging tool to detect 
remaining cancer cells in the margins of resected breast cancer 
tumours in murine models [14]. Other two oncolytic viruses 
which have been employed are poxvirus and vesicular stomatitis 
virus; those approaches have demonstrated to have positive 
effects in an HCT116 colon cancer xenograft mouse model [15] 
and in hematological malignancies as in immunocompetent mice 
with syngeneic 5TGM1 myeloma tumours [16], respectively.  
Noteworthy are the viruses based on conditionally replicating 
adenoviruses (CRAds). NIS has been widely used for NIS transfer 
on CRAds for imaging and therapy. Vassaux’s group described 
several viruses [17, 18] under several promoters driving the viral 
replication on different populations and type of tumors. NIS-Ads 
were also used to track stem cells on their migration to the tumors 
[19] with promising results.

Nanoparticles and NIS in Therapy

The relationship between the sodium/iodide symporter 
(NIS) and nanoparticles is based on their potential applications 
for medicine and imaging. Consequently, researchers have 
investigated the utilization of the NIS transporter in conjunction 
with nanoparticles to facilitate targeted drug delivery [20]. This 
approach involves attaching nanoparticles to specific ligands 
capable of binding to the NIS transporter, enabling the direct 
administration of radioisotopes to cells expressing this transporter 
[21]. Urnauer’s team [22] conducted in vitro and in vivo studies 
to assess the capability of the B6 ligand in NIS gene delivery. In 
conjunction with LPEI-PEG/NIS polyplexes (specifically LPEI-
PEG-B6/NIS), they successfully demonstrated enhanced iodide 
uptake in the tumor and significant accumulation of radioiodine 
in tissues expressing NIS physiologically, thereby confirming its 
high tumor specificity and ligand-dependent uptake. The study 
conducted by Le Goas and colleagues aimed to evaluate the capacity 
to radiosensitizer neoplasms using nano therapy in combination 
with standard systemic radioiodine therapy [23]. For this purpose, 
gold nanoparticles (AuNPs) were chosen and administered in 
conjunction with standard systemic radioiodine therapy, with 
a perspective towards clinical translation. Gold nanoparticles 
(AuNPs) were selected to enhance the lethal efficacy of iodine-131 
in two types of tumor cells genetically modified to express NIS 
[24]. In the case of colorectal cancer cells (DHD-NIS), the analyses 
indicated a higher concentration of gold compared to the B16-
NIS melanoma cells, significantly decreasing the 50% lethal dose 
in DHD-NIS cells. Furthermore, the enrichment of tumors with 
PMAA-AuNPs prior to 131I therapy led to a more effective inhibition 
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of tumor growth [25], creating new perspectives for the use of 
metallic nanoparticles in molecular radiation therapy, not only in 
131I-based treatment but also in other radiotherapeutic therapies. 
Finally, the use of dendrimers bound to a DNA plasmid carrying NIS 
showed promising results both for diagnostic and therapy [26].

The fusion of the NIS transporter with nanoparticles offers 
numerous advantages, including targeted drug delivery, enhanced 
therapeutic effectiveness, diminished systemic side effects, and 
the ability to non-invasively image specific tissues. However, it 
is important to note that this field is still evolving, with ongoing 
research shaping the application of the NIS transporter and 
nanoparticles in medicine and imaging. Consequently, the specific 
details and advancements in this area may vary as new studies 
and discoveries emerge.

Final Remarks

The examination of the NIS transporter in conjunction with 
viral and non-viral vectors for cancer therapy and diagnostic 
in unrelated non-thyroid pathologies represents a relatively 
underexplored area of research harboring significant prospect. The 
application of these vectors and their subsequent implementation 
of radiotherapy signifies a remarkable advancement for the 
treatment of diverse pathologies, marking a pivotal milestone in 
cancer research.
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