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Introduction	

The dairy products will increase in the near term. However, 
the dairy sector needs to prepare for unequal effects of climate 
changes [1,2]. Climate change becomes a growing concern that 
may challenge future feed resources and dairy production in 
the tropics.  Improvement of tropical crossbreds, utilization of 
agricultural by-products in ration balancing, nutrient requirement 
correction, and management are measures to dampen the effect of 
heat stress and improve tropical dairy production [3]. Currently, 
most of the Brazilian dairy herds consist of Girolando cows, 
a cross between Gir (Bos indicus) and Holstein (Bos taurus) 
[4]. The use of crossbred animals in dairy herds in regions that 
do not offer optimal environmental and nutritional conditions 
has some advantages in comparison to the use of pure animals, 
mainly in terms of fertility, longevity, and milk quality [5-7]. These 
characteristics affect dairy farming in an economically feasible 
way. The effects of heterosis in crossbred dairy cows are important,  

 
especially in economic comparisons throughout their productive 
life [8-12]. In many cases, F1 crossbreeds perform better than 
other genotypes [5,13].  But for successful crossbreeding the 
choice of appropriate breed combinations for the environment 
and production system management is essential.  The aim of this 
study was to analyze uterine involution, return to cyclicity, milk 
yield, body condition scoring (BCS), and to check whether there 
was a correlation between these parameters in crossbreeding 
dairy cows with two genetic compositions. In addition, were also 
evaluated the productive and reproductive responses of these 
animals in two different climatic periods, regardless of genetic 
composition.

Material and Methods

The study was approved by the Animal Use Ethics Committee, 
Biological Sciences, University of Brasília, Distrito Federal, Brazil 
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Abstract

Crossbred animals are widely used in dairy farming, especially in regions with adverse environmental conditions and poor forage availability. This 
study was carried out on Girolando dairy cows belonging to two different genetic compositions. These cows were followed from the beginning of 
pregnancy until the postpartum period, when the cyclic activity was restored. The aim was to analyze milk yield, body condition scoring (BCS), 
uterine involution, and return to cyclicity and to check if there was a correlation between these parameters. Productivity and reproductive 
performance in two different climatic periods were also evaluated. We used 49 cows representing two crossbreeding levels, the GS1 group (1/2 
Gir × 1/2 Holstein; n = 31) and the GS2 group (3/4 Holstein × 1/4 Gir; n = 18). Cows in the GS1 group had higher milk production, recovered BCS 
faster and consequently required fewer days to return to cyclicity (p < 0.05). No differences were observed in the other parameters evaluated 
including time for uterine involution, and BCS at calving (p > 0.05). The cows in the GS1 group were better than those in the GS2 group in the 
studied production system. Cows calving in the winter showed earlier uterine involution, return to cyclicity, more milk production, and had better 
BCS in the postpartum period when compared to those calving in the summer.

Keywords: BCS; Cattle; Crossbreed; Milk; Uterine involution

Abbreviations: BCS: Body Condition Scoring; FAL: Agua Limpa Farm; CL: Corpus Luteum

http://dx.doi.org/10.19080/JDVS.2023.15.555912
http://juniperpublishers.com
https://juniperpublishers.com/jdvs/


How to cite this article: Tiago Mendonça de Souza, Fábio Athair Ribeiro Cordeiro, Michelle dos Santos Mota, Ernandes Rodrigues de Alencar, Rodrigo 
Arruda de Oliveira and Ivo Pivato. Dairy Crossbreeding: An Option to Face the Challenges of Climate Change-Productive and Reproductive Features from 
Two Different Genetic Groups. Dairy and Vet Sci J. 2023; 15(3): 555912. DOI: 10.19080/JDVS.2023.15.555912

002

Journal of Dairy & Veterinary Sciences

(Protocol No. 89/2017). The research was carried out at the 
Água Limpa Farm (FAL), an experimental area of the University 
of Brasília located at 15°56′ to 15°59′S and 47°55′ to 47°58′W 
coordinates. The region has a climate with two well-established 
seasons: dry winter (April to September) and rainy summer 
with high temperatures (October to March). The animals used 
in the crossing were the Gir which is a breed of dairy cattle from 
India and Holstein. The products from this cross are known by 
the generic name of Girolando. Forty-nine cows representing 
two crossbreeding levels with different degrees of zebu-taurine 
blood were used, the GS1 group (1/2 Gir × 1/2 Holstein; n = 31) 
and the GS2 group (3/4 Holstein × 1/4 Gir; n = 18). The cows 
were 24 to 60 months old with an average weight of 450kg. The 
animals were kept on pasture and supplemented with corn silage, 
concentrate, and mineral salts, with unrestricted access to water. 
These cows were followed from the beginning of pregnancy until 
the postpartum period, when the cyclic activity was restored.

Body condition scoring (BCS, from 1 to 5, where 1 is very 
thin and 5 is obesity), in the prepartum period and changes in 
the BCS in the postpartum period until the beginning of cyclicity 
were evaluated. Gynecological examinations started 10 days after 
calving and were repeated every two weeks (SonoSite M-Turbo®, 
5-10 MHz) until the return to cyclicity was confirmed. Over this 
period, milk yield (kg/day) was also evaluated. Uterine involution 
was considered complete when the diameter of the uterine horns 
showed a difference of ≤ 2 mm, and the return to cyclicity was 
verified by the presence of the corpus luteum (CL). The productive 
and reproductive performance was also compared in the two 
different seasons, summer, and winter, irrespective of genetic 

composition. Data analysis was performed using descriptive 
statistics followed by the D’Agostino-Pearson Omnibus normality 
test. Unpaired t-tests and Mann Whitney tests were used for 
comparisons between the two groups using the GraphPad Prism® 
6 program. For correlation analysis, the Spearman test was 
performed.

Results and Discussion

There was a difference between the GS1 and GS2 groups (p < 
0.05) when comparing milk production, number of days to return 
to cyclicity, and BCS at first postpartum ovulation. On the other 
hand, there was no difference in all other evaluated parameters 
(days for uterine involution and prepartum BCS) (Figure 1). It was 
observed that GS1 cows returned to cyclicity 17.14 days earlier 
than GS2 cows (p < 0.05). According to several authors [13-15] this 
can be explained by the heterosis of the GS1 group, formed by F1 
females. Moreover, other factors can affect the return to cyclicity, 
such as BCS at calving and postpartum, breed, dairy production, 
postpartum diseases, uterine involution, and thermic stress [16]. 
The interval between calving and first service in the GS1 group 
was 70.9 days, and for the GS2 this interval was 88.1 days. The 
GS1 cows, despite having a slightly lower BCS at calving than GS2 
cows (3.4 and 3.5, respectively), stabilized the BCS more quickly, 
produced more milk, and required less time to return to cyclicity. 
This was possibly due to the hybrid vigor of these animals. Other 
studies have also reported that the F1 progeny obtained from 
crossing breeds showed good characteristics of their parents, 
showing better performance (more productive), and maximum 
heterosis or hybrid vigor [15,17].

Figure 1:  Average days for uterine involution (UI), days for returning to cyclicity (CL), precalving BCS, BCS on CL detection, and milk 
yield in the GS1 (1/2 Holstein and 1/2 Gir, light bars) and GS2 (3/4 Holstein and 1/4 Gir, dark bars) cows. * p < 0.05. 

http://dx.doi.org/10.19080/JDVS.2023.15.555912


How to cite this article: Tiago Mendonça de Souza, Fábio Athair Ribeiro Cordeiro, Michelle dos Santos Mota, Ernandes Rodrigues de Alencar, Rodrigo 
Arruda de Oliveira and Ivo Pivato. Dairy Crossbreeding: An Option to Face the Challenges of Climate Change-Productive and Reproductive Features from 
Two Different Genetic Groups. Dairy and Vet Sci J. 2023; 15(3): 555912. DOI: 10.19080/JDVS.2023.15.555912

003

Journal of Dairy & Veterinary Sciences

The desirable characteristics of these animals give them 
rusticity, greater resistance to ecto and endoparasites, better 
productive capacity, adaptation to the tropical environment, 
and greater tolerance to heat stress [4,14]. However, Perotto 
[18] reported that in semi-intensive or intensive conditions, 
Girolando cows with a higher percentage of Holstein blood (3/4 
and 7/8) produced more milk than half-blood animals. This 

observation differs from the results of the present study; however, 
it is necessary to consider the production system. There was no 
difference in the prepartum BCS between the groups. However, 
the GS1 group showed a higher BCS (p < 0.05) in the return to 
cyclicity than the GS2 group. On the other hand, weight loss was 
significantly different (p < 0.05) between the two groups with the 
GS2 cows showing greater loss (Figure 2). 

Figure 2:  Difference in the precalving BCS between GS1 (1/2 Holstein and 1/2 Gir) and GS2 (3/4 Holstein and 1/4 Gir) cows, BCS on CL 
detection and BCS loss. * p < 0.05. 

The loss of BCS between the prepartum period and the return to 
cyclicity was possibly due to the reduction in the dry matter intake 
and a concomitant increase in energy demand for the beginning 
of lactation, leading to a probable negative energy balance [19]. 
In the GS2 cows, the loss was more accentuated, possibly due to 
the higher nutritional requirements of these animals, as they have 
3/4 of Holstein blood. Loss of BCS in the postpartum period was 
also described by Busato & Mouffok [20,21], who concluded that 
the mobilization of body reserves may be related to genetic merit, 
and more productive lineage cows tend to lose more BCS in the 
postpartum period.

Santos [19] found that cows returning earlier to cyclic 
activity lost less BCS compared to animals that took more time. 
They also found that loss equal to or greater than one BCS unit 

in the first postpartum week leads to a significant increase in the 
period for the return to cyclicity. This observation agrees with 
our results, where the animals with greater loss of BCS (group 
GS2) required 88.11 days to return to cyclicity, while the animals 
that lost less (group GS1) needed only 70,9 days. The authors 
also pointed out that the high loss of BCS reflects the BEN, which 
affects reproductive performance. In the present study, it was 
also possible to compare cows that calved in the winter when the 
temperature was mild (June to September) and in the summer 
when the highest temperatures were experienced (December to 
March). For this comparison, the data from the two groups were 
mixed. It was found that cows calving in the summer needed more 
time for uterine involution, to return to cyclicity, and produced 
less milk (p < 0.05) compared to animals that calved in the winter 
(Figure 3).
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Figure 3:  Average days for uterine involution (UI), days for return to cyclicity (CL), precalving BCS, BCS in the return to cyclicity (CL 
detection), and milk yield of Girolando cows that calved in the summer and winter period. * p < 0.05. 

Cows calving in the summer spent 32 days for uterine 
involution and 86.71 days to return to cyclicity. Animals that gave 
birth in the winter required 24.55 days for uterine involution and 
58.77 days for the return to cyclicity. The delays in relation to 
uterine involution and return to cyclicity in the summer period 
can be explained by the negative effects of thermal stress and 
environmental discomfort, challenges that cause a decrease in 
the consumption of dry matter, generally leading to NEB and 
hormonal disorders with negative reflex in the uterine involution 
and the return to cyclic ovarian activity as well as impairment of 
the immune system [22,23]. Thompson & Dahl [24], following 
2613 births in three consecutive years in Florida, showed the 
effects of the hot months on the occurrence of disorders in the 
first 60 days postpartum. They observed that the animals showed 
impaired development of the mammary gland with subsequent 
reduction in milk production, impaired immune system with 
a higher incidence of mastitis, respiratory problems, retained 
placenta, and decreased reproductive performance, resulting in 
an increase in the number of days for return to cyclicity compared 
to months with mild temperatures. 

Conclusion

In this study, the GS1 group cows were better, as they had 
superior milk production, fewer days to return to cyclicity, and 
better BCS from calving to ovulation. Cows calving in the winter 
required shorter time for uterine involution and to return to 
cyclicity than cows calving in the summer. They were also better 
in milk production and had better BCS in the postpartum period 
when compared to those that had calved in the summer. Although 
the crossbred animals are more resistant, they also show some 
degree of difficulty in reestablishing homeostasis in unfavorable 
environmental conditions. It is important to know the local and 
adapted breeds and look for the cross that favors the increase in 
production (meat or milk), without losing the main resistance 
characteristics.
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