Effects of Multivitamins and Enzymes on Growth Performance and Hematological Parameters of Broilers at Meherpur in Bangladesh

Zannatul Ferdous¹, M Aktaruzzaman², MM Rahman¹ and MMR Howlader¹*

¹Department of Physiology, Sylhet Agricultural University, Bangladesh
²Department of Pharmacology and Toxicology, Bangladesh

Submission: December 22, 2017 ; Published: April 20, 2018

*Corresponding author: MMR Howlader, Department of Physiology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh, Email: howlader.sau@gmail.com

Introduction

In Bangladesh, livestock contributes 2.73% of total GDP (Bangladesh Bureau of Statistics). About 15% of her total population suffers from malnutrition due to deficiency of calorie and protein [1]. The availability of animal protein in the country is only 7.6g [2], against the FAO recommendation of 28g. Poultry sub-sector is an important avenue to reduce the gap between demand and supply of animal protein.

Enzyme and multivitamin protect deficiency diseases and stimulate growth rate. Beside this, enzyme supplement along with multivitamin reduces mortality, keep birds healthy, increase feed intake, improve digestion and feed conversion rate. Most of the feed ingredients contain some anti-nutritional factors and indigestible part, which hinders feed utilization and bird’s performance.

In commercial poultry farming feed cost is a major contributor as it covers 65-70% of farm expenses. In feed formulation grains have major share which contain non-starch polysaccharides (NSPs). These NSPs are not digestible by the endogenous enzymes of poultry. In order to make them available for digestion, certain enzymes are supplemented. Legume seeds also contain NSP-like hemicelluloses, mannan, and raffinose. Chickens are unable to produce some enzymes, such as galactosidases; thus, corn- soybean-based diets without supplemented enzymes such as xylanases and pectinases might result in gas accumulation in the gut and diarrhea [3].

Supplementation of poultry diets with exogenous enzymes is one approach to help animals in hydrolysis of these oligosaccharides [4,5]. Enzyme supplementation is considered to break the bond among NSPs and reduce their anti-nutritional effect and results in improved nutritional value of feed materials [6,7]. The effect of exogenous enzyme may be variable as it is dependent on different factors like bird age, feed type and quality [8,9].

Widely used enzymes in feed industry are - galactosidase, amylase, β-glucanase, cellulase, protease, pectinase and xylanase that cleave the non-starch polysaccharides in cereals and vegetable meals. Protease breaks down proteins by proteolysis of the peptide bonds that link amino acids together in the polypeptide chain forming the protein. Proteases work best in acidic conditions except alkaline proteases. Its optimal activity is shown in alkaline pH [10].
Based on the above mentioned perspective, the present research work was undertaken to fulfill the following research objectives:

a. To evaluate the effect of enzymes and multivitamins supplementation on growth performance in broilers.

b. To study the effect of enzymes and multivitamins supplementation on broiler in terms of hematological parameters (TEC, Hb, PCV and ESR).

Materials and Methods

The experiment was conducted under the department of physiology, Sylhet Agricultural University. The hematological test was performed at Upazila Veterinary Hospital, Gangni, Meherpur.

For this study a total of 200 day old chicks were purchased from CP Company Ltd and randomly divided into four (4) equal groups (50×4) and numbered them as group T_0, T_1, T_2 and T_3. Group T_0 was considered as control. Birds were housed into a well ventilated, proper atmosphere and hygienic condition. The broilers were feed with standard broiler starter and broiler finisher ration throughout the experimental period. Group T_1 was treated with supplementation of 1gm enzymes/liter drinking water. Group T_2 was treated with supplementation of 0.5gm vitamins/liter drinking water and Group T_3 was treated with supplementation of 1gm enzymes plus 0.5gm vitamins/liter drinking water. Initial body weight of each bird was recorded just prior to segregation and kept into pens. Fresh, clean and normal drinking water was made available for all times to the birds. Feeder and waterer were provided to the birds according to the recommendation of Panda et al. Each pen was 2.5 ft×2ft and was allotted for 200 birds. Therefore, floor space provided for each bird was 1ft2. Fresh and dry rice husk was used as litter at a depth of about 4cm. As per head the old litter material was changed using new rice husk to prevent birds from fungal or coccidian attack. The birds were exposed to a continuous lighting during day and at night electric bulb were provided as a source of heat. Body weight on 7 days of age (day 0 of experiment) was more or less similar. Highest body weight was recorded in group T_1, and lowest in group T_0. The recorded body weight was 125.24±2.04gm in group T_0, 128.32gm in group T_0, 132.58±3.39gm in group T_3.

On 14 days of age (7th day of experiment) it was observed that the body weight in control group T_0 was 530.56±3.53 gm, in group T_1, was 550.43±5gm, in group T_2, was 535.34±7.91gm and in group T_3, was 563.21±8.60gm. All the data were statistically significant (p<0.01). The lowest and highest body weight was observed as 563.21±8.60gm and 530.56±3.53gm, respectively.

On 21 days of age (14th day of experiment) the body weight in control group T_0, was 901.24±13.45gm and in the treated groups were 955.54±8.43gm in group T_0, 949.37±16.58gm in group T_1, and 1059.65±22.49gm in group T_3. The increased rates were statistically significant (p<0.01). The highest body weight was recorded in treated group T_1, but among the treated groups the lowest body weight was recorded in group T_2. But among the treated groups the lowest body weight was recorded in group T_3.

On 28 days of age (21th day of experiment) the body weight in control group T_0, was recorded 1646.25±32.64gm and in the treated groups were 1710.34±43.65gm in group T_1, 1670.64±43.01gm in group T_2, and 1865.54±26.93gm in group T_3. The average body weight of all treated groups were statistically significant (p<0.01) than the control group. The highest body weight was recorded in treated group T_1, and lowest in control group T_3. But among the treated groups the lowest body weight was recorded in group T_2.

On 35 days of age (28th day of experiment) the body weight in control group T_0, was recorded 2120.74±46.37gm and in the treated groups were 2250.34±43.01gm in group T_0, 2140.64±35.36gm in group T_0, and 2520.47±98.23gm in group T_3. The highest body weight was recorded in group T_3 (2520.47±98.23gm).

After collection of data from the farm, verified to eliminate errors and inconsistencies. Then the data were tabulated into computer. The data generated from this study was entered in Microsoft excel worksheet, organized and processed for further analysis. All data were analyzed by One-way ANOVA using Minitab 17 Statistical Software. Finished test was further done for comparison of means.

Results

Body weight on 7 days of age (day 0 of experiment) was more or less similar. Highest body weight was recorded in group T_1, and lowest in group T_0. The recorded body weight was 125.24±2.04gm in group T_0, 128.32gm in group T_0, 132.58±3.39gm in group T_3.

For this study a total of 200 day old chicks were purchased from CP Company Ltd and randomly divided into four (4) equal groups (50×4) and numbered them as group T_0, T_1, T_2 and T_3. Group T_0 was considered as control. Birds were housed into a well ventilated, proper atmosphere and hygienic condition. The broilers were feed with standard broiler starter and broiler finisher ration throughout the experimental period. Group T_1 was treated with supplementation of 1gm enzymes/liter drinking water. Group T_2 was treated with supplementation of 0.5gm vitamins/liter drinking water and Group T_3 was treated with supplementation of 1gm enzymes plus 0.5gm vitamins/liter drinking water. Initial body weight of each bird was recorded just prior to segregation and kept into pens. Fresh, clean and normal drinking water was made available for all times to the birds. Feeder and waterer were provided to the birds according to the recommendation of Panda et al. Each pen was 2.5 ft×2ft and was allotted for 200 birds. Therefore, floor space provided for each bird was 1ft2. Fresh and dry rice husk was used as litter at a depth of about 4cm. As per head the old litter material was changed using new rice husk to prevent birds from fungal or coccidian attack. The birds were exposed to a continuous lighting during 12 hours a day. During night electric birds were used to provide necessary light. In order to maintain required temperature and humidity inside the pen all the windows of the farm were kept open during day and at night electric bulb were provided as a source of heat. Body weight was recorded at 7 days interval up to the end of the 28 days of experimental period and collection of blood sample for hematological study (TEC, Hb, PCV and ESR) by acid hematin method. For hematological test 5ml of blood was collected with anticoagulant in the sterile glass test tubes.

Table 1: Effect of vitamins and enzymes on body weight of broilers

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Birds</th>
<th>Body Weight Gain (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 day</td>
</tr>
<tr>
<td>T_0</td>
<td>50</td>
<td>125.24±2.04</td>
</tr>
<tr>
<td>T_1</td>
<td>50</td>
<td>128.32±2.05</td>
</tr>
<tr>
<td>T_2</td>
<td>50</td>
<td>130.35±3.53</td>
</tr>
<tr>
<td>T_3</td>
<td>50</td>
<td>132.25±3.39</td>
</tr>
</tbody>
</table>

*Values followed by different superscript in the same column differ significantly p<0.01.

How to cite this article: Ferdous J, M Aktaruzzaman, MM Rahman , MMR Howlader. Effects of Multivitamins and Enzymes on Growth Performance and Hematological Parameters of Broilers at Meherpur in Bangladesh. Dairy and Vet Sci J. 2018; 5(5): 555674. DOI: 10.19080/JDVS.2018.05.555674
Body weight recorded on 14, 21, 28 and 35 days of age shows increased body weight and increase body weight was gradual in group T3 but increase in other groups was rapid in comparison to control group. Total Erythrocyte count is presented in Table 1. On the final day of experiment (35 days of age) the values of TEC in control group T0 was 2.71±0.04million/mm³ and in the treated group T3 was 3.00±0.02million/mm³, Group T1 was 3.26±0.20million/mm³ and group T2, was 3.29±0.21million/mm³. The highest values of TEC was in the group T3. (3.29±0.21million/mm³) and lowest in control group T0 (2.71±0.04million/mm³). All the values of treated groups were significantly higher than the control group T0.

Table 2: Effect of vitamins and enzymes on hematology of broilers.

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Birds</th>
<th>TEC (millions/mm³)</th>
<th>Hb (gm/dl)</th>
<th>PCV (%)</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>50</td>
<td>2.71±0.04a</td>
<td>7.64±0.15c</td>
<td>27.99±0.18c</td>
<td>2.40±0.12a</td>
</tr>
<tr>
<td>T1</td>
<td>50</td>
<td>3.00±0.02a</td>
<td>8.38±0.14b</td>
<td>30.24±0.31b</td>
<td>2.00±0.29b</td>
</tr>
<tr>
<td>T2</td>
<td>50</td>
<td>3.26±0.20a</td>
<td>8.70±0.21b</td>
<td>30.80±0.21b</td>
<td>1.98±0.16a</td>
</tr>
<tr>
<td>T3</td>
<td>50</td>
<td>3.29±0.21c</td>
<td>9.08±0.40b</td>
<td>31.08±0.35b</td>
<td>1.50±0.16c</td>
</tr>
</tbody>
</table>

*Values followed by different superscript in the same column differ significantly p<0.01.

Hemoglobin content in different groups of birds is presented in Table 2. On the final day of experiment (35 days of age) the values of Hb content in control group T0 was 7.64±0.15gm/dl and the treated group T3 was 8.38±0.14gm/dl, group T1 was 8.70±0.21gm/dl and group T2 was 9.08±0.40gm/dl. The highest value of Hb content was recorded in group T3 (9.08±0.40 gm/dl) and lowest value of Hb content was recorded in group T0 (7.64±0.15gm/dl). All the values of packed cell volume (PCV) is presented in Table 2. On the final day of experiment PCV value of groups T0, T1, T2 and T3 were 27.99±0.18%, 30.24±0.31%, 30.80±0.21% and 31.08±0.35% respectively. The highest value was recorded in group T3 (31.08±0.35%) and lowest value was recorded in group T0 (27.99±0.18%). All the values of treated groups were significantly higher than the control group T0.

Erythrocyte sedimentation rate (ESR) is presented in table 2. On the final day of experiment ESR value of groups T0, T1, T2 and T3 were 2.40±0.12, 2.00±0.29, 1.98±0.16 and 1.50±0.16mm in 1st hour respectively. The lowest value was found in group T3 (1.50±0.16 mm in first hour) and highest was in control group T0 (2.40±0.12mm in first hour). All the value of treated groups were significantly (p<0.01) decreased than the control group T0.

Discussion

The increased rate of body weight gain in the treated groups might be due to an increased feed intake, feed consumption, utilization, digestion, absorption and metabolism of supplied feed nutrient specially protein essential for their health and body weight gain. Increased live weight for addition of enzymes was similar to previous findings [11-15]. They concluded that improved feed utilization by exogenous enzyme is responsible for an increased live weight in broilers. This finding contradicts with the report of Preston, who found that enzyme inclusion did not improve performance. This work also deferred earlier report of who reported that live weight did not increase with enzyme supplementation in barley and triticale based diets.

The increased weight in present finding resembles Villar who reported that weight gain and feed efficiency increased statistically with vitamin supplementation. This present work is also in agreement with the earlier reports of Khatun, Gavrilona [16-18].

The increased level of total erythrocyte count, hemoglobin content and packed cell volume might be due to the initiative effects on hemopoietic organs. There are some vitamins such as vitamin B12, pantothentic acid, folic acid and biotin which are essential for normal growth of the hemopoietic organs and erythropoiesis. The concentration of erythrocytes may be influenced by certain vitamins and drugs. The hematological parameters of present finding resembles to that of Dukes [19] who reported that the number of erythrocytes and other components of blood varied due to the influence of age, sex, environment, exercise, nutritional status and climate.

But the result of hematological parameters are contrary to Cengiz [20], who observed that there were not any significant effects on blood parameters (RBC, HB, PCV and TLC) after given vitamin. In group T2 and T3 multivitamins and enzymes were used respectively and the results of these two groups are in agreement with previous different studies. But in group T3, multivitamins and enzymes together were used and better results than that of T2 were found [21-26].

Acknowledgement

This work was funded by The Ministry of Science and Technology, Government of Bangladesh through their fellowship scheme.

References

How to cite this article: Ferdous J, M Akhtaruzzaman, MM Rahman, MMR Howlader. Effects of Multivitamins and Enzymes on Growth Performance and Hematological Parameters of Broilers at Meherpur in Bangladesh. Dairy and Vet Sci J. 2018; 5(5): 555674. DOI: 10.19080/JDVS.2018.05.555674