A Review Paper on Melamine in Milk and Dairy Products

Maryam Jalili*

Department of Food Research and Agriculture, Standard Research Institute, Iran

Submission: February 10, 2017; Published: March 23, 2017

*Corresponding author: Department of Food Research and Agriculture, Standard Research Institute, Karaj, Iran, Email: maryamjalili@yahoo.com; Jalili@standard.ac.ir

Abstract

Milk has been recognized as a food with a high proportion of the dietary components which makes it a perfect food for infant, children and adults. Unfortunately milk adulteration is a serious issue throughout the world. Some reasons for milk fraud may include the big gap between demand and supply, perishable nature of milk, low purchasing capability of customer and lack of suitable test method for detection of milk frauds [1].

Some examples of Adulteration of milk include addition of water, whey, vegetable oil and protein and milk from different species, which are known as economically motivated adulteration [2]. These milk frauds do not pose any severe health risk. However, some adulterants showed serious adverse effect on human health such as adding urea, formalin, detergents, alkaline and acidic compounds, hydrogen peroxide and melamine.

Melamine is added into milk to increase the protein count at less cost. Melamine or 2,4,6-triamino-1,3,5-triazine (C₃H₆N₆) is a nitrogen-rich compound which has been used for producing plastics, adhesives, laminates, paints, permanent-press fabrics, flame retardants, textile finishes, tarnish inhibitors, paper coatings and fertilizer mixtures [3].

Melamine is added into milk to increase the protein count at less cost. Melamine or 2,4,6-triamino-1,3,5-triazine (C₃H₆N₆) is a nitrogen-rich compound which has been used for producing plastics, adhesives, laminates, paints, permanent-press fabrics, flame retardants, textile finishes, tarnish inhibitors, paper coatings and fertilizer mixtures [3].

Melamine Toxicity

In 2007, in North America, widespread pet illness and deaths were attributed to the formation of melamine- cyanurate crystals in the kidneys of these animals [7]. In 2008, in China, more than 50,000 infants have been hospitalized and resulted in 6 deaths after eating milk powdered baby food tainted with melamine [8].

Melamine is described as being harmful if swallowed, inhaled or absorbed through the skin [9]. However, it is not carcinogenic compound and has low oral acute toxicity; but it causes renal and urinary problems and even infant death when it reacts with cyanuric acid inside the body [10]. The harmful effect of melamine is considered to increase in combination with its analogues, particularly cyanuric acid. FDA reported that when melamine and cyanuric acid are absorbed into the bloodstream,
they concentrate and form large numbers of round, yellow crystals, which in turn block and damage the renal cells [11]. The toxic dose of melamine is on a par with common table salt with an LD50 of more than 3 grams per kilogram of bodyweight [9].

Codex alimentarius has established the maximum melamine limit of 1 mg/kg for powdered infant formula, 0.15mg/kg for liquid infant formula and a maximum level of 2.5mg/kg for milk and products containing milk or milk-derived ingredients [12].

Melamine transmission to milk

Some of the ways in which melamine can find its way into milk and dairy products are as follows:

A. Adulteration to Milk product to “fake” protein [13]

B. Use of the pesticide cyromazine on crops (Cyromazine is metabolized into melamine in the animal’s body and, therefore, could be present as contaminant in their milk and tissue).

C. Use of nitrogenous fertilizers, if containing melamine as a source of nitrogen

D. Consumption of cyromazine or melamine contaminated crops

E. Transfer of melamine from plastics used in milk packaging materials [9].

When the cows graze melamine fertilized pasture, melamine will transfer to their milk and tissue. Melamine transfer from grass to milk is as soon as 8 hours with the efficiency of 3% for the low and 2.1% for the high melamine concentration pasture [14].

It has been reported that the amount of melamine in dairy products exhibited concentrations in the following increasing order: Milk<yoghurt<coffee mate<cheese<infant formula [15].

Occurrence of melamine in milk and dairy products

After the first report about melamine in infant formula products in China, international food regulatory authorities confirmed that other foods containing milk such as, milk and whey powder, casein, milk-based candies, instant powdered coffee products, biscuits, chocolates, milk-based drinks and cakes could be contaminated with melamine [16].

In a research conducted in China, 87 out of 111 infant formula products were contaminated with melamine ranging from <0.05 to 4700 mg/kg (Chinese Centre for Disease Control and Prevention, unpublished data, 2008). Fifty-one of the 87 positive samples had a concentration higher than 1000mg/kg. In contrast with these reports, in Australia, 360 samples of dairy foods had been tested for the presence of melamine. No melamine was detected in any of these samples, where the limit of reporting (LOR) varied from <0.1 to <1.0mg/kg, depending on the food matrix and the analytical method employed [16].

Japan submitted positive melamine results for various milk-based bakery and confection, snack food ranged from 0.5 to 41mg/kg. Higher levels of melamine were found in frozen dairy-based desserts [17].

In general, the following data have been published by International Food Safety Authorities Network (INFOSAN) about melamine content of milk and dairy products. Samples of biscuits, cakes and confectionery (0.6-945.86mg/kg); liquid milk and yoghurt products (0.5-648mg/kg); frozen desserts (39-60.8mg/kg); powdered milk and cereal products (0.38-1143mg/kg); processed foodstuff (0.6-41 mg/kg); food-processing ingredients (1.5-6694mg/kg); and animal feed (116.2-410mg/kg) [17].

Gather information about the occurrence of melamine in food is somewhat difficult, since some countries have submitted only positive concentrations that were above the maximum levels they have established for melamine in food, whereas other countries submitted data on any positive determinations (regardless of whether they were above maximum limits [16,18-21].

Some reports about occurrence of melamine in milk and dairy products have been summarized in Table 1.

Table 1: The world wide occurrence of melamine in milk and dairy products.

<table>
<thead>
<tr>
<th>Country</th>
<th>Matrix</th>
<th>No. of Sample</th>
<th>No. of Positive Sample</th>
<th>Range</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Infant milk formula</td>
<td>8</td>
<td>100%</td>
<td>9.49-258</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Growing up milk formula</td>
<td>8</td>
<td>100%</td>
<td>7.75-251</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Cream Milk Powder</td>
<td>6</td>
<td>100%</td>
<td>29.1-39.7</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Pasteurized milk</td>
<td>7</td>
<td>100%</td>
<td>0.028-0.071</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Powdered milk</td>
<td>10</td>
<td>100%</td>
<td>0.0001-0.0006</td>
<td>20</td>
</tr>
<tr>
<td>Newzealand</td>
<td>Dairy products</td>
<td>180</td>
<td>6 (>3%)</td>
<td>>1 – 20</td>
<td>16</td>
</tr>
<tr>
<td>Canada</td>
<td>Dairy products</td>
<td>80</td>
<td>60 (75%)</td>
<td>0.0043-0.346</td>
<td>16</td>
</tr>
<tr>
<td>America</td>
<td>Dairy products</td>
<td>44</td>
<td>100%</td>
<td>0.137-0.249</td>
<td>16</td>
</tr>
<tr>
<td>United kingdom</td>
<td>Dairy products</td>
<td>21</td>
<td>-</td>
<td>33-259</td>
<td>15</td>
</tr>
<tr>
<td>Iran</td>
<td>Yoghurt</td>
<td>15</td>
<td>100%</td>
<td>0.2-1.12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Milk</td>
<td>15</td>
<td>100%</td>
<td>0.12-0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infant formula</td>
<td>15</td>
<td>96%</td>
<td>0.31-4.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheese</td>
<td>15</td>
<td>93%</td>
<td>0.14-3.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee mate</td>
<td>15</td>
<td>100%</td>
<td>0.05-1.52</td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Turkey</th>
<th>Pasteurized milk</th>
<th>Powdered infant formula</th>
<th>Fruit yogurt</th>
<th>Soft cheese</th>
<th>Milk powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>44%</td>
<td>Mean: 294±98</td>
<td>Mean: 121</td>
<td>Mean: 694±146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Given the adverse effect of melamine on human health especially on infants, it seems that serious controlling programs should be implemented to prevent the entry of melamine in milk and dairy products. For instant good manufacturing practice (GMP) and good quality control programs are very effective manner in controlling the level of melamine in milk. Besides that, more work is still needed to estimate the concentration of melamine in edible parts of crops and feed and the ingredients of agricultural fertilizers should be regulated to prevent the use of melamine as a fertilizer ingredient in the future.

Acknowledgement

The current study was supported by Standard Research Institute (SRI) Department of Food Industries and Agricultural Research.

References

11. FDA (2008) Issues interim safety and risk assessment of melamine and melamine-related compounds in food, Food and Drug Administration, USA.