Comparison of the Effects of Clonidine, Promethazine, and Morphine on Bleeding During Rhinoplasty Surgery: A Triple-blind Clinical Trial Study

Amirsadra Zangouei1, Seyed Ali Hossein Zahraei2, Seyyed Hasan Karbasy2, Maryam Rahmanifar2 and Malihe Zangouei*

1Faculty of Medicine, Mashhad University of Medical Sciences, Iran
2Department of Anesthesiology, Birjand University of Medical Sciences, Iran

Submission: May 02, 2019; Published: May 31, 2019
*Corresponding author: Malihe Zangouei, Assistant Professor, Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran

Abstract

Introduction: Intraoperative bleeding is a complication of rhinoplasty which directly affects the outcome of the surgery and the hemodynamic indices of the patient. Different approaches like administration of premedication, head elevation, and use of vasoconstrictor agents like phenylephrine and epinephrine and have been used to minimize the amount of blood loss.

Objective: To compare the impact of clonidine, promethazine, and morphine drugs used as premedication on bleeding during rhinoplasty.

Methods: In this clinical trial study, 60 patients of those referred to ENT clinic of Vali-e-Asr Hospital for rhinoplasty and met the inclusion criteria, were chosen by convenience sampling and were divided into three groups, 20 patients in each, by permuted block randomization. Anesthesia method was the same in these groups. One hour before the surgery, patients in the clonidine and promethazine groups received 300µg clonidine and 25mg promethazine orally, respectively, and patients in the morphine group received 0.1mg/Kg of morphine intramuscularly. Data were analyzed by SPSS software version 15 using One-way ANOVA, Tukey, Kruskal-Wallis, and Mann-Whitney U tests. A P-value less than 0.05 was considered statistically significant.

Results: This study showed that the mean amount of bleeding during surgery was less in the clonidine group compared with other groups, but this difference was not significant (P=0.07). Systolic blood pressure, heart rate per minute, and erythrocyte saturation rate immediately after intubation, 0.5, 1, 1.5, and 2 hours after intubation showed no considerable difference between the groups (P>0.05). The surgeon’s satisfaction with the surgery was significantly higher in the clonidine group patients (P=0.04).

Conclusion: Average bleeding in the clonidine group patients was less than other patients and that the result is not statistically significant may be due to small sample size. With regard to higher satisfaction of the surgeon with clonidine, we suggest it is used as a premedication in rhinoplasties.

Keywords: Clonidine; Promethazine; Morphine; Bleeding; Rhinoplasty

Introduction

Rhinoplasty is a plastic surgery of the nose for reconstructing and correcting its form, improving its function or for esthetic reasons [1]. It is the most common plastic surgery in Iran [2]. The rate of rhinoplasty in Iran is 180 per 100,000 populations [3], which is amongst the world highest rate of this surgery [4]. Bleeding is a critical complication of rhinoplasties [5] like other surgical procedures [6], which causes a major challenge for the surgeons and the anesthesiologists. Mortality rate may increase up to 20% due to severe blood loss; however, it is low (ranging from 0.1% to 8%) for most surgical operations [7]. Furthermore, a large amount of blood loss results in prolongation of the time of surgery, an increased possibility of further complications and sometimes may lead to a faulty surgical operation [8]. The surgical area of rhinoplasty is highly vascular and damage to the wall of great vessels like the Angular artery or small vessels such as capillary lead to hemorrhage during the rhinoplasty [9]. There are various approaches to limit and stop intraoperative and postoperative blood loss in surgery such as 60-degree head elevation over the...
rate less than 50 per minute, and developing bleeding disorders diastolic pressures above 160 and 90 mmHg respectively, heart were excluded from the study on the basis of having systolic and inhibitors intake were eligible to enter the study. Individuals of anti-depression or anticoagulant drugs or monoamine oxidase and hepatic disease or severe mental disorders, and with no record

Inclusion and exclusion criteria

Individuals aged 18 to 60, with no history of the cardiac, renal, and hepatic disease or severe mental disorders, and with no record of anti-depression or anticoagulant drugs or monoamine oxidase inhibitors intake were eligible to enter the study. Individuals were excluded from the study on the basis of having systolic and diastolic pressures above 160 and 90 mmHg respectively, heart rate less than 50 per minute, and developing bleeding disorders like hemophilia, thalassemia or leukemia.

Ethics

This study was approved by the ethics committee of Birjand University of Medical Sciences (code: Irbums.REC.1396.65) and was registered with IRCT20140519017756N36 code at the Iranian Registry of Clinical Trials. At the beginning of the study, all participants were informed about the aim of the study and written informed consent was obtained from each of them. Moreover, they have ensured that their information remains confidential throughout the study.

Study procedure

Patients in the clonidine and promethazine groups received 300 µg clonidine and 25 mg promethazine orally, respectively, one hour prior to the surgery. Patients in the morphine group received 0.1 mg/Kg morphine one hour before inducing anesthesia, intramuscularly. For inducing anesthesia, fentanyl with the dose of 100 µg/Kg, propofol with the dose of 100 µg/Kg, and atracurium with the dose of 100 µg/Kg were used, and after reaching the adequate depth of anesthesia, intubation was done using a proper tube. Patients also received 100 µg/Kg/minute for maintenance of the anesthesia. Furthermore, controlled hypotension was archived through the injection of 0.1 µg/Kg/minute of fentanyl.

For all patients, the pharyngeal tampon was placed to absorb blood and measure the amount of blood entering the digestive tract. Systolic and diastolic pressures Mean Arterial Pressure (MAP), heart rate, and erythrocyte saturation rate were measured before anesthesia, after intubation, and every 30 minutes after the start of the surgery, using Saadat monitoring device. The amount of bleeding during the surgery was determined by measuring the blood volume in the suction, and the weight difference of the gauzes used (regarding that the density of blood (1.04), 1 gr of blood was considered equal to 1 cc of it).

Statistical analysis

Statistical analysis was performed by SPSS for Windows version 15 (SPSS Inc. Chicago, IL). The Kolmogorov-Smirnov test was used to examine normal distribution. For variables like systolic and diastolic blood pressures, and the alteration of diastolic blood pressure, which were normally distributed One-way ANOVA test was used. Tukey test was performed to compare the alterations in the diastolic pressure among the groups. For non-normally distributed variables such as the amount of bleeding, the MAP and its alteration, and the erythrocyte saturation, Kruskal-Wallis and Mann-Whitney U tests were performed. A p value<0.05 was considered statistically significant in all analyses.

Results

This study was performed on 60 patients with mean age=28.10 (SD=7.31). Demographics of the patients are shown in Table 1. Patients were divided into three groups, clonidine, promethazine, and morphine groups (20 each) by permuted block randomization.
Table 2: Comparison of the bleeding during the surgery in the three groups in the study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Morphine Median(Q25-Q75)</th>
<th>Promethazine Median(Q25-Q75)</th>
<th>Clonidine Median(Q25-Q75)</th>
<th>χ²</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>The amount of blood in the suction</td>
<td>190(150-236.25)</td>
<td>200(180-220)</td>
<td>180(150-200)</td>
<td>3.35</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>The amount of bleeding according to weight of the gauzes</td>
<td>75(52.5-100)</td>
<td>65(60-80)</td>
<td>80(52.5-107.5)</td>
<td>1.15</td>
<td>2</td>
<td>0.69</td>
</tr>
<tr>
<td>Overall bleeding</td>
<td>265(215-320)</td>
<td>275(252.5-280)</td>
<td>260(230-380)</td>
<td>0.69</td>
<td>2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Kruskal-Wallis test was used.

Table 3: Comparison of MAP in different times in the patients of the three groups.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Morphine Median(Q25-Q75)</th>
<th>Promethazine Median(Q25-Q75)</th>
<th>Clonidine Median(Q25-Q75)</th>
<th>χ²</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alteration after intubation</td>
<td>-2.5 (-6.75- -4.25)</td>
<td>-14.0 (-21.75- -3.25)</td>
<td>-5.0 (-14.0- -3.0)</td>
<td>10.58</td>
<td>2</td>
<td><0.01</td>
</tr>
<tr>
<td>Alteration 0.5 hour after intubation</td>
<td>-4.5 (-10.5- -1.0)</td>
<td>-19.5 (-31.5- -5.5)</td>
<td>-15.5 (-19.25- -3.75)</td>
<td>8.54</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>Alteration 1 hour after intubation</td>
<td>-8.0 (-27.5- -2.0)</td>
<td>-23.5 (-30.0- -18.75)</td>
<td>-24.0 (-30.0- -13.5)</td>
<td>10.58</td>
<td>2</td>
<td><0.01</td>
</tr>
<tr>
<td>Alteration 1.5 hour after intubation</td>
<td>-7.5 (-21.75- -1.0)</td>
<td>-25.0 (-29.75- -20.0)</td>
<td>-20.5 (-35.0- -17.25)</td>
<td>4.94</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Alteration 2 hours after intubation</td>
<td>-6.5 (-27.25- -1.0)</td>
<td>-24.0 (-29.75- -20.0)</td>
<td>-22.0 (-28.5- -17.25)</td>
<td>8.94</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>Alteration 2.5 hours after intubation</td>
<td>-8.0 (-16.0- -4.5)</td>
<td>-19.0 (-24.0- -4.0)</td>
<td>-29.0 (-37.5- -24.0)</td>
<td>15.49</td>
<td>2</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Kruskal-Wallis test was used.

Table 4: Erythrocytes saturation in different time pressure in patients of the three groups.

<table>
<thead>
<tr>
<th>Time period</th>
<th>Morphine Median(Q25-Q75)</th>
<th>Promethazine Median(Q25-Q75)</th>
<th>Clonidine Median(Q25-Q75)</th>
<th>χ²</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before induction</td>
<td>98(97-99)</td>
<td>99(98-100)</td>
<td>99(98-100)</td>
<td>5.39</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>After intubation</td>
<td>99(99-100)</td>
<td>99(98-100)</td>
<td>99(98-100)</td>
<td>0.26</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td>0.5 hour after intubation</td>
<td>99(98-100)</td>
<td>99(98-99)</td>
<td>99(98-100)</td>
<td>2.54</td>
<td>2</td>
<td>0.28</td>
</tr>
<tr>
<td>1 hour after intubation</td>
<td>99 (98-100)</td>
<td>99(98-100)</td>
<td>99(98-100)</td>
<td>1.16</td>
<td>2</td>
<td>0.56</td>
</tr>
</tbody>
</table>

We hope that will be considered in the future studies. We also time are other factors affecting the amount of bleeding, which Body and environment temperatures, bleeding and coagulation surgeon, all the rhinoplasties were conducted by one surgeon. which may due to its hypotensive effect which reduces bleeding in the surgery of clonidine group patients was significantly higher, operation into account and found out that surgeon’s satisfaction confirming our results, Woodcock et al. [32] showed that the use of clonidine has significant effect in inducing hypotension and leads to better surgical sight vision for the surgeon which [30]. However, this difference did not reach significance level maybe because of small sample size. Ghazipour et al. [31] showed in their study that the mean amount of bleeding in the patients undergoing rhinoplasty who received oral clonidine prior to anesthetists and surgeons, which directly affects the duration and outcome of the operation. Premedication’s like clonidine have been used to decrease intraoperative blood loss and induce hemodynamic stability. Perioperative use of clonidine has been shown to have antihypertensive effect. Promethazine is a premedication used to reduce postoperative nausea and vomiting [25]. Morphine is another premedication which is utilized to provide postoperative pain relief for the patients [26]. Although there have been several studies confirming the antihypertensive effect of clonidine and its impact on reducing blood loss during surgeries like endoscopic sinus surgery [27], laparoscopic cholecystectomy [28], and aortic [29] surgeries, there is little evidence concerning the role of other premedication’s like promethazine and morphine on blood pressure and bleeding during the surgery. In this study we compared the effects of clonidine, promethazine, and morphine on the intraoperative bleeding and hemodynamic factors like MAP, systolic and diastolic pressures, and heart rate, which to the best of our knowledge is the first study to do so. In our study, we found that intraoperative blood loss was less in clonidine group which we believe is due to its inhibitor effect on alpha-2 receptors in central nervous system leading to constriction of blood vessels and hypotension [30]. However, this difference did not reach significance level maybe because of small sample size. Ghazipour et al. [31] showed in their study that the mean amount of bleeding in the patients undergoing rhinoplasty who received oral clonidine prior to anesthe therefore, as all these factors have an impact on the overall outcome of the surgeries, we recommend that clonidine is used as a premedication in rhinoplasty.

Discussion

Bleeding during rhinoplasty remains a major challenge for anesthetists and surgeons, which directly affects the duration and outcome of the operation. Premedication’s like clonidine have been used to decrease intraoperative blood loss and induce hemodynamic stability. Perioperative use of clonidine has been shown to have antihypertensive effect. Promethazine is a premedication used to reduce postoperative nausea and vomiting [25]. Morphine is another premedication which is utilized to provide postoperative pain relief for the patients [26]. Although there have been several studies confirming the antihypertensive effect of clonidine and its impact on reducing blood loss during surgeries like endoscopic sinus surgery [27], laparoscopic cholecystectomy [28], and aortic [29] surgeries, there is little evidence concerning the role of other premedication’s like promethazine and morphine on blood pressure and bleeding during the surgery. In this study we compared the effects of clonidine, promethazine, and morphine on the intraoperative bleeding and hemodynamic factors like MAP, systolic and diastolic pressures, and heart rate, which to the best of our knowledge is the first study to do so. In our study, we found that intraoperative blood loss was less in clonidine group which we believe is due to its inhibitor effect on alpha-2 receptors in central nervous system leading to constriction of blood vessels and hypotension [30]. However, this difference did not reach significance level maybe because of small sample size. Ghazipour et al. [31] showed in their study that the mean amount of bleeding in the patients undergoing rhinoplasty who received oral clonidine prior to anesthe therefore, as all these factors have an impact on the overall outcome of the surgeries, we recommend that clonidine is used as a premedication in rhinoplasty.

Conclusion

We concluded that clonidine was superior to promethazine and morphine in inducing hypertension, reducing blood loss, and providing better vision for the surgeons. Surgeon’s satisfaction was considerably higher when clonidine was used. Therefore, we suggest that likewise studies be performed with a control group and bigger sample size to stabilize our results and provide us with more evidence on the effects of premedication on intraoperative bleeding and hemodynamic indices.

Acknowledgment

The authors would like to thank the staff of ENT clinic of Vali-e-Asr Hospital for their help toward conducting this study.

References

