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Introduction

Mining can be regarded as a global resource supply, supporting 
the gross domestic product (GDP) of various countries, and having 
a key role in their stable industrial and sustainable economic 
development [1]. As the human population increases and 
urbanization accelerates, the demand for resources is also growing 
rapidly. The mining industry needs to change to meet this demand 
by seeking innovation and advancement in mining technologies 
to increase efficiency in all stages of mining, and energy efficiency 
[2]. This goes beyond providing environmental sustainability and 
a safe work environment for miners to operate. Mining innovations 
are becoming more complex involving smart sensors, remote 
operations, advanced power systems, reliability and resilience, 
robots operating in harsh environments such as hot and humid 
underground tunnels, high topology, and desert climates [3]. The 
prime example of the application of the current revolution in the 
mining technologies is the Gudai-Darri iron ore mine in Pilbara, 
Western Australia, operated by Rio Tinto and known as the SMART 
Mine. Rio Tinto has implemented autonomous mining transport  

 
trucks, trains and drill rigs, there is no need for manual labour at 
this mine site, and all engineers and operators work remotely. Each 
operator can control up to eight trucks one of which is equipped 
with a combination joystick, at the Mining Control Station located 
at approximately 110 kilometres northwest of the Gudai-Darri, at 
Newman, Western Australia [4]. These innovative technologies 
have transformed traditional mining to automated robotic mining, 
integrating machine learning, robotics, and remote operations 
to maximize mine operational efficiency, reduce human safety 
risks and mitigate environmental sustainability. Innovation and 
transformation in the mining industry have increased iron ore 
production at the mine from 159 tons in 2000 to 836 tons in 2020 
[5]. The Rio Tinto Financial report states that the integration of 
automation technology can not only increase productivity but also 
reduce operating and maintenance costs [5]. The success of this 
Rio Tinto operation has inspired further research into perfecting 
autonomous mining operations through fully automated remote 
control without the need for humans, while swarm robots can 
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leverage nature-inspired swarm algorithms for decision-making 
and consensus building.

In this paper, nine nature-inspired swarm algorithms have been 
systematically analyzed through theoretical and mathematical 
models based on swarm behaviours and collaborations found 
in nature. The results from these analyses can contribute to the 
wider implementation of swarm robotics in mining and hence, 
achieving improved mining optimisation and operations. This 
research offers a structured and comprehensive framework of 
swarm robotics integrated mining that can be helpful for the 
further advancement of future mining technologies.

Analysis of Swarm-Based Bioinspired Algorithms

This section analyses theoretical and mathematical 
models of nine nature-inspired swarm algorithms, focusing on 
understanding how corresponding animal and insect models 
from nature collaborate, cooperate, and survive in large groups.

Ant Colony Optimization (ACO) Algorithm

The Ant Colony Optimization (ACO) algorithm is a meta-
heuristic algorithm inspired by the foraging behavior of 
ants, and was proposed by Dorigo in 1992 [6,7]. The ACO 

algorithm illustrates the concept of stigmergy, utilizing indirect 
communication through ant pheromone experiments to imitate 
ants’ pathfinding techniques, and uses a population-based 
approach in pheromone search experiments to solve optimization 
problems [8]. ACO schematic diagram [9] and finite state flow 
chart [10] includes initializing algorithm parameters and agents, 
building solutions through state transition rules, and refining 
these solutions through fitness-based evaluation, as shown in 
(Figure 1).

( )( ) ( )( )/  allowed ik
ij ij ij ij ijP zα β α βτ η τ η= ∈∑  (1)

( )1 m k
ij ij ijk
τ ρ τ τ= − + ∆∑  (2)

Equation (1) on the probabilistic decision-making equation

( )k
ijP , integrates the pheromone trace ( )ij

ατ  and the heuristic 
desirability ( )ij

βη between nodes for the search and harvest 
process. The uniqueness of the ACO algorithm lies in the 
dynamic feedback mechanism ( )ijτ  in Equation (2). Using the 
pheromone evaporation (ρ) and ant deposition ( )k

ijτ  to update 
the pheromone trial can avoid local optimality and converge to 
the optimal solution. Through a complex interplay of exploration, 
exploitation, and adaptive feedback, ACO leverages biomimetic 
approaches to efficiently solve computational problems.

Figure 1: ACO schematic diagram [9] and finite state flowchart [10].

Particle Swarm Optimization (PSO) Algorithm 

The particle swarm optimization (PSO) algorithm is a meta-
heuristic algorithm inspired by the social behavior of birds and 
fish and was proposed by Eberhart and Kennedy in 1995 [11,12]. 

The PSO algorithm illustrates the interactions and collaborations 
of fish schools and birds to optimize problems through social 
learning. PSO schematic diagram [13] and finite state flow chart 
[14] involve initializing the agents in the swarm and iteratively 
updating their speed and position using the individual experience 
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and consensus in the swarm, to update to the final optimal position 
through the global position, thereby effectively navigating to the 
optimal solution, as shown in (Figure 2).



( ) ( )1
1 1 2 2

t t t t t t t t
i i b i b i

Inertia Personal Global

V WV c U P P c U g P+ = + − + −
 

 (3)

1 1t t t
i i iP P V+ += +  (4)

Equation (3) on the updated speed mechanism ( )1t
iV +  

integrates the inertia of particles with cognitive and social 
components through personal memory and global consensus. The 
acceleration coefficients (c1 & c2) and random variables ( )1

tU
and ( )2

tU are used to balance global and local searches. ( )1t
iP +

in the position updates Equation (4) incorporates the updated 
speed, and the optimal position is refined through the fitness 
value. Through complex collective intelligence and social learning, 
PSO can adapt to involve complex optimization strategies and 
search for the global optimum.

Figure 2: PSO schematic diagram [13] and finite state flowchart [14].

Artificial Bee Colony (ABC) Algorithm 

The artificial bee colony (ABC) algorithm is a swarm-based 
metaheuristic algorithm inspired by the foraging behavior of bees 
and was proposed by Karaboga in 2005 [15,16]. The ABC algorithm 
illustrates the social role allocation of bees, such as onlooker bees, 
employed bees, and scout bees. The mission of the scout bees is to 
explore the quality and location of nectar and inform the onlooker 
bees, who will decide on the nectar collection location through 
decision-making, and the recruits or employed bees will do the 
harvesting [17]. The ABC schematic diagram [18,19] and finite 
state flow chart [20] involve initializing the agent, searching for 
suitable nectar sources, and refining the solution through greedy 
selection, as shown in (Figure 3).
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Equation (5) on the selection probability ( )iP , combines the 
selection of observation bees with the adaptability of food sources, 
and selects sources with higher quality. The new exploration 
position ( )*

ijX in the Equation (6), implements the perturbation 
vector ( )ij∅ to modify the position of the bee to find the nearby 
food sources. The updated positions ( )1 1,  Yt t

k kX + +
in Equation 

(7), illustrates that the hired bees use new information and old 
locations to refine the optimal location. Through sophisticated 
position updating and forging strategies, ABC can contribute to 
complex optimization tasks and optimization problems.
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Figure 3: ABC schematic diagram [18,19] and finite state flowchart [20].

Figure 4: FA schematic diagram [23] and finite state flowchart [24].
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Firefly Algorithm (FA)

The Firefly Algorithm (FA) is a meta-heuristic algorithm 
inspired by the attraction of fireflies’ bioluminescence and was 
proposed by Yang in 2007 [21, 22]. The FA algorithm illustrates 
the attraction of fireflies to different bioluminescence intensities 
(solution qualities) to find the best solution in the search space. 
FA schematics diagram [23] and finite state flow chart [24] involve 
initializing a population of agents in a search space and then 
updating their positions by light intensity to evaluate fitness, as 
shown in (Figure 4).

( ) 2

0
rr e γ−Ι = Ι  (8)

 ( ) 2

0
rr e γβ β −=  (9)

( ) ( )1t t t t
j j i j jX X r X Xβ α+ = + − + ∈    (10)

Equation (10), the updated position equation ( )1t
jX + , is 

integrating optimal position updates based on light intensity (I) 
and attraction (β). Light intensity and attraction decrease with 
distance [25]. With complex position updates through optical 
attraction, FA can help to solve optimization problems to search 
for local and global optimal solutions.

Bat Algorithm (BA)

The Bat Algorithm (BA) is a meta-heuristic algorithm inspired 

by the echolocation behavior of microbats and was proposed 
by Yang in 2010 [26]. The BA algorithm illustrates the foraging 
behavior of bats and uses sound pulses to detect food or prey. This 
can also be used to avoid obstacles caused by bats’ poor vision and 
find the optimal solution in the search space [27]. BA schematics 
diagram [28] and finite state flow chart [29] involve initializing 
the agent and then evaluating position and velocity updates based 
on local search and pulse return feedback (e.g. pulse rate and 
loudness), as shown in (Figure 5).

( )1t t t t
i i i gbest iV V X X f−= + −  (11)

1t t t
i j iX X V−= +  (12)

X t
new oldX Aε= +  (13)

Equation (11), the velocity update ( )t
iV , combines the frequency 

of bat echolocation with the global optimal position of the colony. 
The new velocity update is applied to the position update ( )t

iX in 
Equation (12). By adjusting the frequency and intensity of the pulse 
and reflection, and the bat’s sensory modulation of prey detection 
through amplitude modulation (A), the echolocation accuracy and 
the optimal solution can be improved. The new optimal position 
( )newX  is obtained by Equation (13). By performing complex 
position updates via pulse frequency and intensity adjustments, 
BA can help to solve optimization problems on navigating and 
searching in multidimensional space problems.

Figure 5: BA schematic diagram [28] and finite state flowchart [29].
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Krill Herd (KH) Algorithm 

The krill herding (KH) algorithm is a swarm-based 
metaheuristic algorithm inspired by the krill swarm behavior and 
proposed by Gandomi and Alavi in 2012 [30]. The KA algorithm 
illustrates the induced motion, foraging movement, and physical 
diffusion for navigating and searching in multidimensional spaces 
[30, 31]. The KH schematic diagram [32] and finite state flow chart 
[33] involve initializing the agent and fitness, followed by three 
motion evaluations to search for optimal solutions and maintain 
cohesion within the group, as shown in (Figure 6).

, 1

1
5

N
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d X X
N =

= −∑
 (14)
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   (15)

( ) ( ) i
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dXX s s X s s
dt
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Equation (14), the perceived distance between krill ( ),s id is 
calculated by combining the three movements with the global 
movement speed idX

dt
 
 
 

in Equation (15), and to calculate the best 
new position ( )iX s s+ ∆ Equation (16) is used. This movement 
mechanism demonstrates the social dynamics of krill movement 
of searching and navigating in multi-dimensional space to 
effectively converge, avoid falling into local optima, and maintain 
group cohesion [33].

Figure 6: KH schematic diagram and finite state flowchart [32].

Grey Wolf Optimization (GWO) Algorithm

The Grey Wolf Optimization (GWO) algorithm is a meta-
heuristic algorithm inspired by the social hunting behavior 
and hierarchical structure of grey wolves and was proposed by 
Mirjalili and Lewis in 2014 [34]. The GWO algorithm illustrates 
the social structural roles of Alpha, Beta, Delta, and Omega used 
in solving optimisation problems in wolf siege and hunting 
strategies [35]. GWO schematic diagram [34] and finite state flow 
chart [36] involve initializing each agent in the search space, then 
updating the position according to the movement of Alpha, Beta 

and Delta, and further recalculating the distance according to the 
hierarchical role to adjust the strategy, as shown in (Figure 7).

( ) ( ) ,
pC X XD t t

→
→ → →= × − ( ) ( )1

pXX t t A D
→ → →

→+ = − ×  (17)

1D C X Xα α

→ → → →= × − , 
1 1X X A Dα α

→ → → →= − ×

2D C X Xβ β

→ → → →= × − , 
1 3X X A Dβ β

→ → → →= − ×

3D C X Xδ δ

→ → → →= × − , 
3 3X X A Dδ δ

→ → → →= − ×

( ) ( )1 2 3
1 / 3X X XX t

→
→ → →+ = + +  (18)
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Equation (17), the position of the leader wolf )( D
→

uses the 
coefficient vectors )( A

→
and )( C

→
to integrate hunting movements 

and to update the positions of other pack members ( 1)X t
→
+  

in Equation (18). These hunting mechanisms illustrate the 
social dynamics of grey wolves and can be used in complex 
multidimensional optimization problems with efficient 
convergence capabilities.

Figure 7: GWO schematic diagram [34] and finite state flowchart [36].

Salp Swarm Algorithm (SSA) 

The salp swarm algorithm (SSA) is a meta-heuristic algorithm 
inspired by the leader-follower formation of salp chains and was 
proposed by Mirjalili in 2017 [37]. The SSA algorithm illustrates 
the formation of a leader-follower, in which the salp leader guides 
the group to search for plankton, and the followers update their 
positions based on the salps ahead to search in multidimensional 
space. The SSA schematic diagram [37] and finite state flow 
diagram [38] involve initializing the agent and fitness, followed 
by position updates based on the leading salp to maintain the 
formation, as shown in (Figure 8).

Equations (19) and (20), show the updated positions of 
the leader and follower, and the salp motion is determined by 
integrating the Newtonian motion principle. The leader salps 
update food location, search range and randomness (yi), (ubi) 
and (lbi) respectively, to search in multi-dimensional space. These 
chain-forming mechanisms allow SSA algorithm counters to 
optimize tasks and avoid local maxima.

Grasshopper Optimization (GOA) Algorithm

The grasshopper optimization (GOA) algorithm is a meta-
heuristic algorithm inspired by grasshopper swarming and 
foraging behavior and was proposed by Saremi, Mirjalili, and Lewis 
in 2017 [39,40]. The GOA algorithm illustrates the three-motion 
account for social interaction, gravity, and advection in navigating 
and moving in large groups [41]. The GOA schematic diagram [42] 
and the finite state flow chart [28] involve initialising the agent 
and fitness, and then conducting three motion evaluations to 
search for the optimal solution and maintain cohesion within the 
group, as shown in (Figure 9).

The movement of the grasshopper (X_i) in Equation (22) is 
determined by integrating the social interaction, gravity, and wind 
direction, 〖(S〗_i),〖(G〗_i) and (A_i) respectively, and Euclidean 
distance between the grasshoppers. These grasshopper swarm 
dynamics mechanism allows the GOA algorithm to search in 
multidimensional space.
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Figure 8: SSA schematic diagram [37] and finite state flowchart [38].

Figure 9: GOA schematic diagram [41] and finite state flowchart [42].

Swarm Algorithms in Robotics 

Currently, Swarm robotics is being successfully applied to solve 
problems in various fields, such as in agriculture, where SAGA 

uses bee foraging models for field mapping and weeding [43], or 
in construction, where TERMES uses the termite colony concept 
to build autonomous building structures [44]. The applications 
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of swarm robots are impressive, but the knowledge behind 
how swarm robots collaborate, reach consensus, communicate, 
and share information, and take inspiration from nature is an 
important subject to understand.

According to Brambilla’s 2013 study on the classification 
of swarm robots, the behavior of swarm robots can be divided 

into four categories: spatial organization, navigation, decision-
making, and miscellaneous [46,47], as shown in (Figure 10). This 
classification facilitates designing swarm robots to meet specific 
operational needs. In this study, a comprehensive framework will 
be established to further analyse the research on nine swarm-
based algorithms considered in this paper, that can be applied to 
swarm robot behavior classification.

Figure 10: Taxanomy of swarm behaviours [47].

Spatial organization

Spatial organization refers to the collective intelligence of 
swarm robots that can interact and organize within allocated 
areas to aggregate, execute patterns, assemble, or collect objects 
[46,47]. The PSO algorithm illustrates the aggregation and pattern 
formation of fish schools that swim to avoid predators [48], 
similar to the KH algorithm where large groups of krill gather and 
form large swarms to avoid predators and stay cohesive [49]. The 
GOA algorithm illustrates the aggregation of group dynamics of 
grasshopper movements in large groups [40]. The ABC algorithm 
illustrates object clustering based on how bees cluster themselves 
and the nectar in their hives [50]. The FA algorithm illustrates 
the clustering toward high light intensity [51]. The SSA algorithm 
illustrates the pattern formation of how salps form chains [52].

Navigation 

Navigation refers to the collective intelligence of a swarm of 

robots that can determine a known location and guide themselves 
or other robots to a specific location. Namely, it includes 
swarm exploration, movement under set coordinates, swarm 
transportation and localization [46,47]. The foraging behavior 
of the ACO, ABC, KHA, SSA, BA, GOA and GWO algorithms reflects 
collective exploration and localization, and they tend to explore 
and locate food in large groups to achieve continuous harvesting. 
The FA algorithm’s bioluminescent light attraction illustrates 
collective localization, where all fireflies follow basic rules to 
attract towards higher light intensities [53]. The synchronized 
movement of the PSO [54], KHA [55] and GOA [40] algorithms 
illustrate coordinated movement, with the entire colony having 
local and global positions to adjust to with the aim to avoid 
predators, similar to SSA, where salps always adjust their position 
as the position of the leading salp is updated [37]. ACO’s unique 
harvesting behavior exemplifies collective transportation, with 
ants tending to pick up heavier or larger objects and place them 
into the hive.
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Decision making

Decision-making refers to the collective intelligence of a 
swarm of robots that is capable of reaching consensus, allocating 
tasks amongst the swarm, detecting failures, sensing and adapting 
to the surrounding environment, performing synchronized tasks, 
and controlling swarm size [46,47]. The collective swarm behavior 
of the ACO, PSO, ABC, FA, BA, KHA, GWO, SSA and GOA algorithms 
illustrates the tendency of consensus mechanisms and collective 
perception to perceive and make consistent decisions within large 
groups to reach consensus, such as ants based on pheromone 
trails or bees based on waggle dance to harvest food; birds, fish, 
and krill use global motion to update their positions; fireflies and 
bats receive brightness and echoes to determine direction, and 
wolves update their positions based on social structure.

The specific role assignments for ACO, ABC and GWO illustrate 
the distribution of specific tasks within the group. Leafcutter 
ants separate tasks such as cutting and transporting leaves and 
cultivating fungi [56]; bees separate tasks such as exploring 
nectar sites, selecting high-quality nectar, and collecting nectar 
[15]; wolves separate tasks such as exploring, surrounding prey, 
attacking, and hunting. The self-diagnostic capabilities of SSA and 
KHA illustrate collective fault detection, with old or damaged salps 
in the chain detaching from the chain or changing positions with 
more fit salps [57], similar to krill who sense and moving toward 
healthy krill position [30], and both mechanisms are able to sense 
neighbouring agents to maintain formation. The FA algorithm 
illustrates synchronisation by the blink technique, whereby male 
fireflies tend to respond to female fireflies with synchronized 
flashes [58].

Miscellaneous

Under miscellaneous category is referred to the collective 
intelligence of a swarm of robots that can heal themselves, 
replicate their members, and interact with humans. The ACO’s 
rerouting strategy illustrates self-healing, and when pheromone 
trial is hindered, the ants execute a self-healing rerouting strategy 
[59, 60].

Swarm formation control

Swarm robot formation control refers to a swarm of robots 
collaborating while maintaining a predetermined formation 
[61]. There are two types of formation control for swarm robots: 
centralized control and decentralized control. Centralized control 
relies on a single command or master switch to control all robots, 
which is more efficient, but has limitations in scalability and 
adaptability [62]; on the other hand, decentralized control allows 
a group of robots to use behaviours inspired by nature, according 
to interactive and local information from nearby neighbouring 
agents or environments automatically make decisions, making 

them more scalable, resilient, and adaptable in unknown 
environments [63].

Virtual structure formation control was proposed by Lewis 
and Tan in 1997 [64]. This is a type of centralized control that 
connects all robots with virtual structures to maintain geometry 
and provide coordinated motion. However, it has limitations due 
to its susceptibility to single points of failure and the difficulty 
of formation adjustment. The SSA algorithm illustrates virtual 
structure formation control, in which a chain of salps guides 
the entire formation through a virtual structure connecting the 
leading and following salps in the chain formation [65].

Behaviour-based formation control was proposed by Balch 
and Arkin in 1998 [66]. This is a type of decentralized control 
inspired by nature’s forming behavior. This structured network 
of interactive behaviours receives information from other robots 
and derives decisions from a behavioural coordinator, requiring 
less group communication load than that for the centralized 
control. However, its limitation lies in formation convergence. 
Swarm algorithms such as ACO, PSO, ABC, FA, BA, GWO, KHA, 
SSA and GOA illustrate behaviour-based formation control 
[63]. Each algorithm has its own unique way of communicating 
and exchanging information with neighbouring agents, such as 
pheromone trial in ants, position adjustments of neighbouring 
agents in fish, fireflies, bats, wolves, krill, salps and grasshopper, 
and waggle dances in honeybees.

Leader-follower formation control was proposed by Desai, 
Ostrowski, and Kumar in 2001 [67]. This is a type of centralized 
control where all robots rely on or are controlled by a leader, 
with followers adjusting and obeying commands accordingly to 
provide superior, simplified, and complete control. However, its 
limitation is that the leader’s failure can lead to the failure of the 
entire formation or system. The GWO [68] and SSA [69] algorithms 
illustrate leader-follower relationships, where the leader wolf and 
the leader salp will be the main controllers and all followers will 
obey and follow the leader’s decision.

Graph-based formation control was proposed by Desai, 
Ostrowski, and Kumar in 1998 [70]. This is a type of decentralized 
control where all robots are modelled in a mathematical graph 
and each robot is treated as a vertex with edge connections 
representing the flow of information from one agent to another. 
The ACO algorithm illustrates graph-based formation control, 
where ants use graph-based functions to detect pheromone 
intensity to find the shortest path [71-73].

Artificial potential formation control was proposed by Khatib 
in 1986 [74]. This is a type of decentralized control where all 
robots interactively control the distance and spacing between 
adjacent agents using attractive and repulsive forces. The KHA 
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algorithm illustrates an artificial potential formation control, 
where each krill has a sensed distance to adjust its position 
relative to the adjacent krill and uses attraction to move toward 
the krill with a higher fitness, and uses repulsion to maintain the 
distance between krill to maintain in a large group [75]. Similar to 
the GOA algorithm, each grasshopper is attracted and repelled by 
the group movement when it is too close to another grasshopper 
to maintain its comfort zone [39, 40].

Swarm behaviour and control 

Although swarm robotics has been successfully applied to 
various fields and industries, such as construction, agriculture, 
entertainment, medical care, etc., , there is a very limited research 

on the application of swarm robotics for the machinery in mining 
operations. While some mines are already applying remote 
operating systems to control autonomous haul trucks, and other 
processes at a mine site, the decentralized control where robots 
can collaborate and communicate with each other to perform 
mining tasks , thus achieving a fully automated mining systems is 
still in development. This research examines further integration 
of swarm algorithms into specific mining operations with the aim 
to improve overall mining productivity, safety, and environmental 
sustainability. Table 1 summarises the comprehensive study of the 
nine nature-inspired swarm algorithms considered in this paper, 
each grouped into specific classifications of swarm behavior and 
swarm robot formation control.

Table 1: Taxonomy of swarm behaviour and formation control in swarm robotics.

Swarm Algorithm Behaviour Taxonomy Formation Control

Ant colony optimisation Decision-making, navigation, miscellaneous Decentralised control, behaviour-based method, graph-based method

Particle swarm optimi-
sation

Spatial organisation, decision making, naviga-
tion Decentralised control, behavior-based method

Artificial bee colony Spatial organisation, decision-making, naviga-
tion Decentralised control, behavior-based method

Firefly algorithm Spatial organisation, decision-making, naviga-
tion Decentralised control, behavior-based method

Bat algorithm Spatial organisation, decision-making, naviga-
tion Decentralised control, behavior-based method

Krill herding algorithm Spatial organisation, decision-making, naviga-
tion

Decentralised control, behavior-based method, artificial potential 
method

Grey wolf optimisation Decision-making, navigation Decentralised control, behavior-based method, leader-follower 
method

Salp swarm algorithm Spatial organisation, decision-making, naviga-
tion

Centralised control, virtual structure method, behavior-based meth-
od, leader-follower method

Grasshopper optimisa-
tion algorithm

Spatial organisation, decision making, naviga-
tion

Decentralised control, behavior-based method, artificial potential 
method

Applications of Swarm Algorithms in Mining 

Mining is the process of extracting natural resources or 
minerals from the earth. The mining life cycle [76] begins with the 
exploration phase, where mineral deposits are explored, mining 
sites are identified based on core log data from drill samples, and 
the presence of valuable minerals is assessed. The next stage is 
the planning stage, where pre-feasibility studies and feasibility 
studies are conducted to determine the economic feasibility 
of the project, considering market demand, mining methods, 
market prices, ore quality, environmental impacts, and regulatory 
requirements. If the project is feasible, the construction phase 
follows that includes the construction of mining facilities, roads, 
mine trucks, tailings dams and more. Mining operations involve 
extraction and secondary processing of minerals for sale. The 
final phase is the mine closure that involves reclamation and 

restoration, as well as continuing to address environmental 
impacts, as shown in (Figure 11).

Mine exploration and assessment 

Mine exploration phase includes core drilling, geological 
analysis, and identification of mineral sites and deposits. A 
variety of swarm algorithms have been integrated into the mine 
exploration stage to improve exploration accuracy and efficiency. 
Nhleko and Musingwini’s 2019 PSO study demonstrated how PSO 
algorithms can be used in conjunction with surveying techniques 
to delineate underground stopes, further improve resource 
extraction efficiency and operational safety [77]. Optimisation of 
mine mapping processes demonstrated PSO’s ability to improve 
the efficiency and safety of underground mining exploration. 
The study by Jafrasteh and Fathianpour in 2017 details the 
fuzzy artificial bee colony (FABC) algorithm for evaluating three-
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dimensional ore characteristics to optimise ore body size, such 
as spatial positioning, azimuth, and inclination of exploration 
boreholes [78]. Compared with traditional optimisation 
techniques, the FABC algorithm reduces the kriging variance by 
adjusting parameters, greatly improving the accuracy of mineral 
resource estimation, and further improving the quality of mineral 
resource assessment and exploration. The precise positioning 
of the borehole improves the accuracy of discovering ore bodies 
and reflects ABC’s ability to improve mine exploration efficiency 
through effective core drilling. A 2023 study demonstrated the 
implementation of the Bat Algorithm (BA) in a hybrid support 
vector machine (SVM) for improving the accuracy of copper-
gold mineralisation mapping, showing a 10% improvement in 
accuracy compared to traditional methods, with an average lower 

square value error of 6.6% and the accuracy being 94.3% [79], 
thus further improving the accuracy of mineral exploration. The 
improved accuracy of mineralisation maps demonstrates BA’s 
ability to leverage accurate geological data to improve mine 
exploration and analysis efficiency. Research by Saremi, Mirjalili, 
and Lewis in 2017 details the implementation of the GOA algorithm 
in mine exploration [39], using grasshopper swarming behavior 
to identify and pinpoint valuable mining areas by balancing global 
and local search mechanisms, and iterating over time to make 
improvements. Effective mine mapping demonstrates GOA’s ability 
to enhance mineral exploration. The comprehensive analysis on 
swarm algorithm into mine exploration and assessment stages 
has been reviewed and classified in Table 2.

Table 2: Mine exploration and assessment overview.

NIA Mining stages Problem addressed Solution provided

PSO Mine exploration and site assessment 
Inefficient resource identification and 

boundary delineation.
Optimises mapping and survey routes for im-

proved efficiency and safety.

ABC Exploration, drilling
Inaccurate drill hole positioning and min-

eral estimation.
Integrating bee inspired fuzzy logic for precise 

positioning and enhance accuracy.

BA Exploration, site assessment and mapping
Traditional prospectivity mapping ineffi-

ciencies.
Integrating hybrid SVM model to enhance map-

ping accuracy and efficiency.

GOA
Exploration, site assessment, mineral 

deposit identification
Ineffective identification of valuable min-

eral deposits.
Balances global and local search capabilities for 

efficient mineral exploration.

Mine planning and design 

Mine planning and design phase includes mine layout, 
mining method selection, costs, operational assessment, mine 
safety and environmental sustainability. Studies show that the 
implementation of the PSO algorithm can be successfully used to 
determine efficient mine operations by improving open pit mine 
layout [80]. The PSO algorithm integrates variants that transform 
traditional block-level scheduling problems by iteratively 
improving these solutions using greedy heuristics to account for 
constraints and uncertainties. The refinement of the open pit 
mine layout demonstrates PSO’s ability to enhance mine planning 
and scheduling problems. Korzeń and Kruszyna elaborated on the 
implementation of the ACO algorithm in the Wrocław underground 
railway project in their 2023 study [81], using the foraging 
behavior of ants to search for the best route, by considering 
the dense population, heavy traffic nearby, and calculations 
of public transport routes. The selection of the optimal route 
demonstrated the ACO’s ability to enhance decision-making and 
optimise mine route planning. Khan’s 2018 study demonstrated 
the application of the BA algorithm in mine planning to address 
long-term scheduling challenges under grade uncertainty [82]. 
The Bat algorithm incorporates uncertainty and shows higher 
efficiency than traditional commercial software. The generation 

of effective solutions illustrates BA’s ability to enhance mine 
design and scheduling. Research by Tolouei and Moosavi in 2021 
demonstrated the implementation of the GWO algorithm using 
the augmented Lagrangian relaxation (ALR) method to carry out 
long-term production scheduling (LTPS) in open pit mine design 
[83]. The hybrid ALR-GWO model showed more advancement than 
the traditional method, achieving a net present value increment 
of 13.39%. The improvement in net present value demonstrates 
GWO’s ability to enhance mine planning through improved 
economic outcomes. Research in 2023 details the application of 
the SSA algorithm in an extreme learning machine (ELM) model 
to improve predictions of ground vibration intensities caused 
by explosions in the Coc Sau coal mine [84]. The hybrid SalSO-
ELM model recorded 216 blasting performances and surpassed 
the traditional model with an accuracy of 90.5%. Enhanced peak 
particle velocity predictions demonstrate SSA’s ability to enhance 
mine blast planning and improve mine safety. The comprehensive 
analyses on swarm algorithm applications in mine planning and 
design stages have been reviewed and classified in Table 3.

Mine operation and construction

Mine operation and construction phases include mine 
extraction for primary production and mine processing for 
secondary production. Research conducted at the Shenbao open 
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pit mine in 2020 demonstrated the use of the PSO algorithm to 
optimize the mine equipment mismatch problem [85]. The PSO 
algorithm combined statistical analysis and uses triangular 
fuzzy numbers to achieve scheduling randomness, reducing the 
number of mining trucks, truck scheduling, transportation costs 
and queuing time. The optimization of mining equipment reflects 
PSO’s ability to enhance mine operations and construction in 
terms of efficient mine operation scheduling. The study by Yan and 
Feng in 2013 detailed the implementation of the ACO algorithm 
in the Unified Tunnel Weight Calculation Model to analyse the 
search for escape routes during mine construction [86]. The 
Max-Min Ant System (MMAS) method was applied to establish 
a tunnel network partitioning strategy to search for the best 
route, and further testing was conducted in large domestic coal 
mines. The optimal escape route obtained was highly reliable and 
suitable for real-life situations. Enhancements to search escape 
route planning demonstrate ACO’s ability to enhance the utility 
of mine construction with greater reliability. The 2021 study 

demonstrated the implementation of FA algorithm at Sungun 
Copper Mine to optimise mining fleet management [87]. The FA 
algorithm transformed fixed scheduling into flexible scheduling 
dispatch method, thereby improving mine performance, increasing 
productivity by 20%, and reducing idle time by 20%. Research in 
2020 demonstrated the implementation of the GWO algorithm in 
a support vector machine (SVM) to optimise parameters to solve 
the problem of fault diagnosis of belt conveyor transportation 
systems in underground mines [88]. The integrated model was 
tested using the hybrid wolf optimizer, and the fault detection 
accuracy was as high as 97.22%, which is suitable for practical 
applications and avoids impact on safety and mine production. 
The improvements in belt conveyor reliability and safety reflect 
GWO’s ability to enhance the construction of conveyor belt mining 
operations. The comprehensive analysis on the applications of the 
swarm algorithm to mine operation and construction stages has 
been reviewed and classified in Table 4.

Table 3: Mine planning and design overview.

NIA Mining stages Problem addressed Solution provided

PSO
Feasibility and operational 

planning
Optimisation of open pit mines, including layout and 

scheduling.
Refines layouts and schedules, effectively 

managing constraints.

ACO Operational planning
Infrastructure layout, method selection, and opera-

tional strategies.
Simulates efficient routes, emphasizing en-

hanced decision-making.

BA
Feasibility planning and mine 

scheduling
Long-term scheduling challenges under grade uncer-

tainty.
Generates effective solutions quickly, manag-

ing uncertainties.

GOA
Feasibility and operational 

planning
Long-term production scheduling in open-pit mining 

with grade uncertainty.
Enhances economic outcomes, improving net 

present value.

SSA Operational planning
Accuracy of peak particle velocity predictions for 

blasting operations.
Improves PPV prediction accuracy for safer 

and more efficient blasting.

Table 4: Mine operation and construction overview.

NIA Mining stages Problem addressed Solution provided

PSO Operational efficiency and safety Mismatch in capacity among equipment.
Optimised equipment matching, reducing 

costs.

ACO Mine safety and construction Inadequate planning for escape route
Improved escape route planning, enhancing 

safety.

FA Mine operation optimisation
Inefficiencies in production rate due to fixed dis-

patch methods.
Optimised fleet composition, improving 

productivity.

GWO Mine safety and construction Fault diagnosis in conveyor systems.
Enhanced fault diagnosis, improving system 

reliability.

Mine closure and rehabilitation

Mine closure and restoration phase includes restoring the 
landscape, waste management, soil detoxification, planting 
vegetation, creating wildlife habitat, mitigating environmental 
impacts, and ensuring public safety. The 2023 study illustrated the 
implementation of PSO in the support vector regression algorithm 
(PSO-SVR) to monitor the environment of the Hongshaquan 

mining area [89]. The integrated hybrid model has been applied 
to UAV measurements of vegetation index, surface temperature, 
salinity index and soil respiration (R²=0.959, RMSE=0.497, AIC=-
0.561). Advanced remote sensing models demonstrated the PSO’s 
ability to continue mitigating and monitoring environmental 
sustainability during mine closures. The comprehensive analysis 
on swarm algorithm application in the mine closure and 
rehabilitation stages has been reviewed and classified in Table 5.
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Table 5: Mine closure and rehabilitation overview.

NIA Mining Stages Problem Addressed Solution Provided

PSO Environmental Monitoring
Inefficient of traditional method meets high 
quality data and computational resources.

Use cloud computing combine with hybrid model for ad-
vance remote sensing for environmental monitoring.

Overview of mine integration

The implementation of nine swarm algorithms in various 
mining stages has been comprehensively analysed and 
summarised in pervious sections of this paper. The contributions 

of swarm algorithms are comprehensively reviewed and classified 
in (Figure 12) to demonstrate that the application of swarm 
algorithms in the mining field can improve mine efficiency, mine 
safety, and environmental sustainability.

Figure 11: Mining Lifecycle [76].

Figure 12: Swarm Algorithm Integration to Mining Lifecycle.

Conclusion

This paper provides a comprehensive study of nine swarm 
algorithms, their nature, mathematical and theoretical models 
of swarm behavior, and presents their implementation and 
classification in swarm robotics and mining operations. Swarm 
algorithms show good results in the applications to all stages 
of the mining life cycle (mine exploration and evaluation, mine 
planning and design, mine operation and construction, mine 
closure and rehabilitation). They can successfully be applied to 
improve aspects such as mapping accuracy and efficiency, drilling 
hole accuracy, mine layout and scheduling, production scheduling, 
blasting efficiency and safety, mining equipment scheduling and 
matching, escape route planning, conveyor belt fault diagnosis 

and environmental monitoring. Besides, integration of NIA also 
can increase the net present value of profits by reducing costs, 
enhancing benefits and safety, and improving environment impact, 
achieve increased productivity by having more reliable systems, 
more accurate feasibility studies and more environmental 
considerations. Current findings on the applications of swarm 
algorithms to mining are promising and further research and 
exploration will allow for more widespread applications of bio-
inspired swarm algorithms in the mining industry. The classification 
of swarm behavior (spatial organization, navigation, decision-
making and miscellaneous) and mining optimisation show that 
the applications of swarm algorithms and swarm robotics can 
contribute to creating more autonomous and robust smart mines 
without human intervention. Such innovation and development 
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in global mining operations will help towards achieving more 
environmentally sustainable mining operations. This study 
explored the application of swarm intelligence algorithms to the 
mining industry, highlighting how nature-inspired algorithms can 
skillfully cope with the complexities of the mining life cycle. It has 
provided an in-depth review and evaluation on the integration of 
these algorithms with existing mining practices, demonstrating 
their superior performance compared to traditional methods, and 
has highlighted the potential of swarm algorithms to revolutionise 
the mining process and industry by providing more efficient, 
accurate and sustainable solutions.
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