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Abstract  

The challenge of rockfall and its associated risks has been haunting the mining industry for quite some time. It has been a significant cause of 
fatalities, serious injuries, and financial losses. Following the established empirical techniques is the most efficient (probably the only) approach 
to studying this problem. But they have their disadvantages; chief amongst them is the detailed and resource-exhausting geological studies. 
Recent technological developments and their introduction into mining engineering applications open the door to updating the studies. Such 
renovations would mainly focus on automating geological mapping of the rock surface using unmanned aerial systems and big data analysis. 
Also, efforts will be taken to model the potential trajectory of the fallen rocks in a semantic 3D model based on machine learning algorithms. 
UAV photogrammetry and LiDAR were used to gather point cloud data to build a 3D model of the rock slope and extract its geological features. 
Furthermore, a trajectory estimation model of rockfalls, also developed at UNR’s Mining Automation lab, uses the mass and origin of rockfalls 
to calculate the impact characteristics and simulate a rockfall’s energy changes during its fall. Both these developments rely on a combination 
of physics-based and data-driven models, necessitating continuous data flow. Moreover, the mine site is a dynamic environment, and changes 
happen daily; therefore, the information about the rock surface must be updated at timely and financially efficient intervals. The empirical 
methods used for generations are our best bet at calculating the rockfall probability; however, we are also exploring the possibility of improving 
these techniques by using machine learning to extract correlations between rockfalls and factors that affect them. One major challenge is the 
availability of historical data on rockfall cases. For this purpose, a geotechnical digital twin of the mine site, capable of combining a high-fidelity 
3D model of the site with semantic data received from monitoring, lab tests (including coefficients of restitution), and simulations, is designed to 
present all this information in a single unified interface for interactive decision making and developing a rockfall risk map.
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Introduction

Rockfall is the continuous movement of a rock down a steep 
slope instigated by adverse discontinuity orientation, freeze-thaw 
cycles, inefficient blasting, water presence, weathering, and veg-
etation on the slope. The rockfall movement is categorized into 
free-falling, bouncing, rolling, or sliding [1]. The rockfall hazard 
rating system (RHRS), introduced by the US Department of Trans 

 
portation, is a uniform method to acquire the geographic locations 
of rockfall sites and categorize them using a two-phase process 
including three preliminary groups and a detailed classification to 
identify the most hazardous sites [1]. However, the general prob-
lem with these empirical procedures is their resource-exhaustive 
approach that requires a very experienced expert to yield the 
appropriate results. Hence, there is a need for a faster, state-of-
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the-art, and economical method to deliver reproducible results 
regardless of the raters’ experience. The geotechnical DT will be 
a hub for a high-fidelity 3D model, an automated geological map-
ping algorithm of the rock discontinuities based on point cloud 
data, and a realistic 3D trajectory simulator for rockfalls, all com-
bined to present the most holistic overview of the rockfall study 
and analyses.

By importing the historical data into this system and comple-
menting it with state-of-the-art technologies, it would be possible 
to make an objective approach capable of producing reproducible 
results. However, the manual geological mapping of the slope is a 
very laborious, exhaustive, and unsafe undertaking. At the Univer-
sity of Nevada, Reno’s Mine Automation Lab., an automated sys-
tem is developed to extract the joint characteristics (orientation, 
spacing, and persistence) from point cloud data. The deep learn-
ing algorithm used in this system shows promising results and ac-
curacy in recognizing joint planes on the rock slope while ignoring 
noises such as vegetation and debris. Of course, like any machine 

learning algorithm, training datasets are critical in developing this 
method [2]. Another significant area of interest for rockfall anal-
ysis is understanding the behavior after their fall. Simulating the 
rockfall paths and finding run-out zones is critical in recognizing 
the gullies in which rockfalls concentrate. A 3D software (Rock 
Path Finder (RPF3D)) was developed assuming lumped masse for 
rockfalls and elastic rock-surface contacts to develop a risk map of 
the mine site. RPF3D is designed as a quick and reliable rockfall 
risk assessment tool for the mine site. The objective is to address 
the shortcomings of available rockfall simulation tools in recog-
nizing mining-specific needs in rockfall trajectory estimation. The 
software, however, is far from the final development stage, and 
a lot of effort is being devoted to addressing the simplifications 
that could tarnish the accuracy of the results. Conducting rigor-
ous lab and field experiments to evaluate the software results is 
also under investigation. Nevertheless, the software capability of 
handling high-fidelity 3D rock slope models in an acceptable time 
to render detailed bounce heights and lateral movements is prom-
ising [3].

Geotechnical Digital Twin

DT’s Definition

Figure 1: Schematics of “feature-based” DT framework [5].

As new technologies are being introduced to the mining in-
dustry, the challenges related to their safe assimilation and the 
potential changes they bring to mining techniques necessitate 
adjustments to the current operations. Predictive simulations are 
significant for understanding unforeseen scenarios and shifting 
costly changes from the operational stage to the design. DT meth-
odology has gained a lot of attention in recent years. Many indus-
tries, from manufacturing to engineering and even social sciences, 
are adopting this approach to understand better the complex sys-
tems they are dealing with [4]. DT is a dynamic idea for imple-

menting technologies; the level at which it is realized depends on 
the data and resources available and managerial decisions [4,5]. 
Data received from various sources (Figure 1) will inevitably 
have different structures and formats and be noisy. Pre-process-
ing the information to “clean” and unify them is essential. Then, 
using available data processing techniques such as statistics (dis-
tribution, correlation, regression, clustering analysis, and dimen-
sion reduction techniques like PCA), neural networks (forward 
NN, feedback network, and self-organizing networks), machine 
learning algorithms, edge computing, and fog computing will help 
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extract meaningful relations and correlations within the dataset 
[6]. Also propose a new hybrid approach to take advantage of the 
accuracy and universality of big data analysis while utilizing inter-

pretable physics-based models, and they call it “Hybrid Analysis 
and Modeling (HAM) “ (Figure 2). 

Figure 2: HAM, combining data-driven and physics-based models [6].

DT’s Application in Rockfall Risk Analysis

Historically, the mining industry has always collected large 
amounts of data; however, there is a significant lack of effort and 
resources to analyze them. One of the critical obstacles to data 
analysis is the lack of communication between the wide range of 
mining operations. Exploring the correlations of seemingly inde-
pendent processes and variables through data-driven models will 
enable managers and engineers to create a holistic approach to 
ensure an optimized solution. Admittedly, the quality of record-
ed data (past or present) has a significant role in the efficacy of 
this approach. However, a more pressing issue is the availability 
of representative data. Furthermore, data quality is a very fluid 
concept depending on specific points of view (noise, corruption, 
bias, etc.) [7] has explored the applicability of DT in disaster man-
agement.

In their case, DT is used as a unifying platform for all the crisis 
information; to implement AI in the situation analysis, decision 
making (including resource allocation), and cooperation of dif-
ferent parties; and to better understand the interactive effects of 
decisions and actions in disaster management. DT can help with 
the training and cooperation of responders in disasters; this ca-
pability is realized through “serious gaming environments” that 
also provide visualization. Analyzing the interaction of respond-

ers and the information they need would help with resource and 
task allocation. The iterative process allows the system to learn, 
grow, and provide predictive simulations [8]. have proposed a DT-
based monitoring system for geological hazards. The evolution 
of the prediction methods for such hazards has led to a dynamic 
system capable of “real-time’ analysis and prediction (using Back 
Propagation Neural Network to calculate the probability of a haz-
ard). Combining data from GIS, GPS, and various remote sensing 
technologies (indicating the status of the topography) with his-
torical data (landslides, subsidence, collapses, and meteorology) 
provides a data visualization tool (based on GIS) and a predictive 
simulator of the behavior of the slope (Figure 3).

Geological Mapping of the Slope Surface

Rockfalls either stem from discontinuities in the rock mass or 
result from erosion. In the first case, the discontinuity (>10 ft) ori-
entation and type (joints, faults, bedding planes, and shear struc-
tures) are the critical factors that one must consider. Infillings and 
water pressure are also very important in subsequent rockfall 
events [1,9,10]. The friction of discontinuity surfaces directly af-
fects the potential movement of a block relative to another. The 
friction is defined based on the features of the macro- (the undu-
lations) and micro- (the texture). Rockfall potential is higher when 
the discontinuity surfaces are highly weathered and open joints 
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with infilling or water dominate the rock slope [1,9,10]. As for 
erosion, differential erosion leads to over-steepened slopes, un-
supported hang walls, or exposed more resistant rock units that 
could be the potential rockfall sources. The differential erosion 
features, alluding to protruding and irregular features on slope 
surfaces, may also cause rockfalls to be launched to an uncharac-
teristic trajectory, offsetting the benefits of safety measures. As for 

the causes of erosion, the experts must consider the collective in-
fluence of physical, chemical, and man-made erosion on the slope 
surface [1,11]. Therefore, geological features on the slope have a 
substantial role in rockfall events, and most empirical methods for 
studying rockfall depend on the measurement and characteriza-
tion of such features.

Figure 3: The DT method is used for geological disaster warning [8].

Nevertheless, the existing methods of geological studies heav-
ily rely on manual measurements, such as scanline mapping of 
rock slope faces or scanning the face using handheld lasers or 
onboard a vehicle and analyzing them using special software. 
Manual methods, however, impose many problems besides being 
a laborious undertaking. Accessing the location under study is of-
ten challenging, if not impossible. Not to mention the increased 
uncertainties that come with estimation procedures inherent to 
extrapolating geological structures based on measurements from 
small sample locations [2]. Of course, there are also safety hazards 
related to sending geologists on foot to extreme locations on the 
mine site. Also, mines are dynamic environments where blasting 
and production happen daily, which requires established plans 
and schedules for new measurements [2]. Automatic or semi-au-
tomatic extraction of discontinuity parameters from the 3D rock 
mass models has recently gained many researchers’ attention. 
Consequently, here at the Mine Automation Lab at UNR, a state-of-
the-art algorithm is developed to extract the joint sets of the slope 
surface and their characteristics based on the rock mass point 
cloud (PC) data generated from UAV imagery and photogramme-
try. The step-by-step procedure of the proposed algorithm is de-
tailed below [2].

First, a training dataset (validated with field measurements) 
is prepared for developing a deep learning algorithm capable of 
classifying the joints on the 3D point cloud. Second, joint planes 
are extracted by implementing clustering algorithms like Den-

sity-Based Scan with Noise (DBSCAN). Third, the orientation of 
identified discontinuity planes is calculated using plane fitting 
techniques such as least-squares plane fitting (Random Sample 
Consensus (RANSAC)) or region growing methods based on lo-
cal surface normal and curvature. Fourth, the orientation of joint 
planes is classified into various joint sets, and their dip and dip 
direction are measured [2].

The following steps of the procedure are currently under 
investigation, including calculating joints’ trace length or per-
sistence. The initial study in this area shows promising results 
when measuring the minimum and maximum persistence along 
dip and dip directions using the convex hull algorithm on extract-
ed joint planes. The Convex hull algorithm fits all the points in the 
plane inside a polygon to maximize the area while minimizing the 
circumference. The other focal points for the ongoing research 
are the calculation of spacing (probably can be calculated as the 
perpendicular distance between joint planes), roughness, and the 
presence of infillings. Figure 4 (a-c) demonstrates the application 
of the algorithm (capable of automatically extracting the joint sets 
on rock slope surfaces based on their 3D PC data) in a case study 
to examine its effectiveness [2]. step-by-step procedure of the de-
veloped technique. Point Net (a deep neural network) is initially 
used to classify joint and non-joint points in the PC dataset (Figure 
4a). The results clearly show the method’s effectiveness in classi-
fying the significant joints (69.64% classification accuracy) while 
dismissing vegetation and debris as noise [2]. 
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Figure 4b showcases the identified joint planes using DBSCAN 
(EPS of 0.5 and min Points of 100) compared to the results of the 
Compass plugin in Cloud Compare software on the manual orien-
tation readings. The final step is to measure dip and dip direction 
(by applying RANSAC) and categorize the joints into specific joint 
sets [2]. The results show that 67 joint planes were marked cor-
rectly, and the rest were noisy. Also, the average error in calculat-

ing the dip angle and dip direction (on the correct joint planes) 
was -2.06° and -1.24°, respectively. As for the computation time, 
the algorithm is about an hour faster than any previously devel-
oped method, demonstrating the significant potential of deep 
learning for discontinuity characterization of rock slope surfaces 
based on PC data [2].

Figure 4a: The results of PointNet classification on the entire case study dataset [2].

Figure 4b: DBSCAN is used for identifying joint planes by clustering the segmented point cloud [2].

Figure 4c: Categorized joint sets on the case study point cloud [2].
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Rockfall Trajectory Estimation 

Understanding the behavior of rockfalls after their fall is as 
imperative as studying the root causes of such events in designing 
mitigating strategies and measures. As rockfalls are generally un-
predictable events, there is little chance to record and investigate 
natural incidents as they happen. Therefore, researchers have 
always heavily relied on the visible impact points, the gullies in 
which most rockfalls are gathered, and lab- or field-scale exper-
iments. On the other hand, the existing numerical modeling and 
simulation tools are generally developed based on simplifications 
that are not good representatives of the reality of rockfall events. 
While providing a detailed simulation of rockfall trajectories, ex-

isting software requires specific parameters as input, which are 
not quickly or safely accessible. Another limitation of this software 
is its incapability to generate a risk heat map for possible rockfall 
gullies. RPF3D, a 3D simulation tool developed in the mine auto-
mation lab at UNR, addresses the shortcomings by incorporating 
a high-level 3D model of the rock surface to generate the “Rock 
Trace Map” from its simulations. RPF3D (developed in Python) 
can effectively read and visualize topography models consisting of 
many mesh elements by utilizing in-house developed algorithms 
that achieve high-resolution slope models. The simulation results 
include 3D rockfall trajectories, rockfall’s bounce height, veloc-
ities, and impact points (leading to creating risk heat maps) for 
safety designs [3](Figure 5).

Figure 5: Potential gullies in the pit. (The yellow line represents the origin of rockfall incidents.) [3].

Moreover, future work will also focus on developing a detailed 
understanding of the influence of the terrain model resolution 
and using generalized coefficients of restitution (COR) vs. local-
ized CORs (e.g., different CORs for the bench face and berm).

Discussion and Conclusion

The RHRS procedure defines the potential rockfall locations 
as any uninterrupted slope along the highway in which the num-
ber of rockfall occurrences and their category are the same. In 
the case of a mine site, the continuous slope geometry where the 
rock type and geotechnical features are relatively similar would 
fall in that category. However, extra care must be given to deter-
mining the number of rockfalls and their cause, as they could 

change dramatically within a long, uninterrupted slope. RHRS 
also recommends that two experts oversee the classification pro-
cess; one conducts the initial and detailed rating of the site. The 
second familiar with the history of rockfalls, the safety measures, 
and their maintenance, will determine the frequency and the type 
of rockfall events. The official RHRS report sheet must be filled in 
along with the experts’ comments. The subjective nature of this 
kind of categorization demands highly experienced people who 
would demonstrate solid judgment in their reports. Between the 
historical data and the estimated potential of rockfall, precedence 
is always given to the latter. The expert must report their opinion 
on the estimated size of the rockfall, the number of rockfalls per 
event, and the efficacy of safety measures [1].
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If historical data is absent, the expert must estimate the num-
ber of rockfalls yearly while providing information about when 
rockfall events peak. Also, in some situations, the existing data-
base does not include smaller events that were overlooked or not 
recorded, as they did not cause harm. The experts must carefully 
examine the recorded data, compare it to their opinion, and make 
the necessary adjustments. One good indicator is always the fre-
quency of ditch maintenance and cleanup, which is usually closely 
recorded and preserved [1,9,10].

After assigning the initial rating to all the slopes along with 
the highway project, in the second step, the slopes are further 
classified based on slope height, average vehicle risk (AVR), sight 
distance, roadway width, block size, the volume of rockfall events, 
ditch effectiveness, geologic characteristics, structural condition, 
rock friction, differential erosion features, differences in erosion 
rates, the climate and presence of water on the slope, and the his-
tory of rockfall. Following is a brief introduction to some of the pa-
rameters mentioned above [1,9,10,12]. AVR depends on the slope 
length, speed limit, and daily traffic and determines the amount 
of time a car will spend in a risky area. When calculating the AVR, 
the slope length must be measured cautiously, as any error would 
cause over- or under-estimation [1].

Decision sight distance (DSD) is the space a driver needs to 
see, perceive an object (rockfall), and bring the vehicle to a com-
plete stop. It is worth mentioning that horizontal and vertical 
curves and obstructions like slope outcrops and vegetation will 
further limit the driver’s ability to see potential hazards [1]. This 
paper examined geotechnical DT as a hub for detailed rockfall 
study, capable of unifying all the necessary information, risk anal-
ysis, and mitigation techniques in one environment [13-15]. 

The monitoring data are essential in determining the poten-
tial of rockfall in a site and the efficiency of mitigation measures 
installed at the site. Having all the data in a centralized space will 
enable further study of the risk factors and their effect individual-
ly and collectively. The geotechnical digital twin showcases excel-
lent potential as a developing idea, and at the University of Neva-
da, Reno, genuine interest and effort are being devoted to further 
defining the parameters of such a system and exploring its effect 
on the mining industry. We hope that developing the geotechnical 
DT will enable us to expand the application of DT to other areas 
of the mining industry, such as fleet management and drilling and 
blasting optimization [16,17].
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