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Abstract

The application of Artificial Intelligence (AI) in assessing the effects of rice production on Nyando Wetlands in Kisumu County presents an 
innovative approach to environmental monitoring and sustainable agriculture. According to Omondi et al. [1], AI-driven remote sensing and 
Geographic Information System (GIS) technologies enable real-time analysis of land use changes, water quality variations, and biodiversity loss 
caused by rice farming activities. Mutua & Kipkorir [2] posits that machine learning models can process satellite imagery and hydrological data 
to detect wetland degradation patterns, helping policymakers and conservationists make informed decisions.

In view of Odhiambo et al. [3], AI-powered predictive analytics can assess the long-term impacts of agrochemical use on water bodies, 
providing insights into pollution levels and their effects on aquatic ecosystems. Additionally, AI-driven simulations allow for scenario modeling, 
helping researchers evaluate the potential outcomes of different rice farming practices on wetland sustainability [4]. Nyaboke et al. [5] further 
contended that AI-integrated Internet of Things (IoT) sensors can monitor soil quality, water pH, and nutrient levels, optimizing rice farming 
while minimizing environmental degradation.

The integration of AI in monitoring Nyando Wetlands can support sustainable agricultural practices by promoting precision farming, 
reducing excessive water usage, and minimizing chemical runoff [6]. Leveraging AI technology in environmental management ensures a data-
driven approach to balancing food security with wetland conservation, ultimately fostering ecological sustainability in Kisumu County.
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Background Information 

According to Omondi et al. [7,8], the Nyando Wetlands in 
Kisumu County are crucial ecosystems that support biodiversity, 
water regulation, and livelihoods through agriculture, particularly 
rice farming. However, rice production has led to environmental 
concerns such as wetland degradation, water pollution, and 
biodiversity loss [9,10]. Traditional methods of monitoring the 
environmental impact of rice farming are often limited by time 
constraints, resource availability, and accuracy [11,12]. The 
integration of Artificial Intelligence (AI) offers a data-driven 
approach to monitoring and mitigating the negative effects of rice 
production while promoting sustainability [2,13]. The role of AI 
in determining the effects of rice production on Nyando Wetlands 
can be examined as follows:

AI in environmental monitoring

Otieno et al. [14] articulates that AI-powered remote sensing 
and Geographic Information Systems (GIS) have revolutionized  

 
environmental monitoring by providing real-time data on land use 
changes and wetland health. According to Nyaboke et al. [5,15] 
machine learning algorithms analyze satellite imagery to detect 
shifts in wetland vegetation cover, water levels, and pollution 
patterns. Owuor & Achieng [6] further noted that AI also enables 
automated classification of land features, ensuring high precision 
in mapping rice cultivation areas and identifying encroachment 
into protected wetland zones. In view of the scholars cited in 
this section, the AI’s ability to process large datasets enhances 
decision-making for conservation efforts and policy formulation.

Predictive analytics for wetland degradation

According to Barasa et al. [16], predictive analytics powered 
by AI can model the long-term effects of rice production on 
wetland ecosystems by simulating different farming scenarios. 
This was also affirmed by Odhiambo et al. [3]. Kiplangat et al. 
[17] observed that AI models trained on historical data can 
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forecast soil degradation, water contamination levels, and 
biodiversity shifts. The study of Wanjala et al. [11] on limitations 
of conventional monitoring techniques in assessing agricultural 
impacts on wetland environments also concurs with the findings 
of Kiplangat. Equally, Ochieng et al. [18] also posited that AI-
driven hydrological models assess water consumption patterns 
in rice fields, helping manage water allocation efficiently and 
preventing excessive water extraction from Nyando Wetlands 
as was established by Mutua & Kipkorir [2]. These predictive 
insights enable stakeholders to implement adaptive measures 
that balance agricultural productivity with wetland conservation.

AI in precision agriculture

Mutiso et al. [19] perceives that AI-integrated Internet of 
Things (IoT) devices have transformed precision agriculture, 
allowing real-time monitoring of soil quality, water pH, and 
nutrient levels. A study conducted by Nyaboke et al. [5] on 
the role of IoT in sustainable agriculture: Opportunities and 
challenges in East African farming systems provides the same 
insight. Smart sensors deployed in rice fields collect and transmit 
data, which AI algorithms analyze to optimize fertilizer use, 
reduce pesticide application, and minimize chemical runoff into 
wetland ecosystems [6,20]. A study which was done by Omondi 
et al. [21] notes that drones equipped with AI-enhanced imaging 
capabilities provide high-resolution aerial surveys, identifying 
areas of concern such as soil erosion and water stagnation. This 
technology not only enhances rice yield but also promotes eco-
friendly farming practices that safeguard wetland biodiversity 
[22].

Challenges and opportunities in AI integration

Wekesa et al. [23] asserts that despite AI’s potential, its 
adoption in wetland monitoring and sustainable agriculture faces 
several challenges, including high implementation costs, lack of 
technical expertise, and limited internet connectivity in rural areas. 
This was also affirmed by Odhiambo et al. [3]. However, Wanjala et 
al. [11] & Mwangi et al. [24] concurs those partnerships between 
research institutions, government agencies, and technology firms 
can drive AI adoption by offering capacity-building programs and 
financial incentives. Policies supporting digital agriculture and 
sustainable wetland management are also crucial in promoting 
AI-driven solutions [2,25].

The integration of AI in determining the effects of rice 
production on Nyando Wetlands presents a transformative 
approach to environmental conservation and sustainable 
agriculture [24]. AI-driven remote sensing, predictive analytics, 
and precision farming techniques provide accurate, real-
time insights for decision-making [17,22]. While challenges 
exist, strategic investments in AI technology and stakeholder 
collaboration can enhance its implementation [23,25]. By 
leveraging AI, Kisumu County can achieve a balance between 
rice production and wetland conservation, ensuring long-term 
ecological sustainability and economic resilience [16,19].

Problem statement

Rice farming is a significant economic activity in Kisumu 
County, particularly in the Nyando Wetland as it provides 
livelihoods for many farmers [26]. However, increased rice 
production has raised concerns about its environmental impact 
on the wetland ecosystem, including water pollution, biodiversity 
loss, and soil degradation [27]. Conventional monitoring methods 
are insufficient in capturing real-time changes, making it difficult 
for policymakers and conservationists to implement timely 
interventions [21]. According to Wanjala et al. [4], the traditional 
methods used to assess these environmental changes are often 
time-consuming, costly, and prone to inaccuracies. The integration 
of AI in environmental monitoring presents an opportunity to 
enhance data collection and analysis, offering predictive insights 
into land-use changes, hydrological alterations, and pollution 
trends. Therefore, integrating artificial intelligence (AI) can 
provide a more efficient and precise approach to monitoring and 
evaluating the ecological consequences of rice farming in the 
region. However, the adoption of AI in this context faces challenges 
such as high implementation costs, lack of technical expertise, 
and inadequate infrastructure in rural areas [2]. Addressing these 
challenges through research, policy support, and investment in 
AI-driven technologies is crucial in ensuring a sustainable balance 
between rice production and wetland conservation [6].

AI-powered remote sensing and machine learning models 
can analyze satellite imagery and on-ground sensor data to detect 
changes in land use, water quality, and vegetation health [15,28]. 
These technologies offer real-time monitoring capabilities, 
enabling stakeholders to make informed decisions on sustainable 
rice farming practices. Additionally, AI can support predictive 
modeling to assess future risks of wetland degradation based 
on current farming trends and climate conditions [25]. However, 
challenges such as data availability, technological infrastructure, 
and capacity building among local farmers and policymakers 
must be addressed for effective implementation. 

Thus, this study explores the integration of AI in assessing the 
environmental impacts of rice farming on Nyando Wetland. The 
findings will contribute to sustainable agricultural policies that 
balance food production with wetland conservation.

Objectives of AI integration in determining the effects of 
rice production on nyando wetland, kisumu county

Integrating Artificial Intelligence (AI) into the assessment of 
rice production’s effects on the Nyando Wetland in Kisumu County 
will serve several critical objectives which include:

a)	 Predictive Modeling for Land Use Planning: AI can 
develop predictive models to assess the long-term impacts of 
expanding rice cultivation on the wetland’s health. These models 
can inform policymakers and stakeholders in making data-driven 
decisions that balance agricultural development with wetland 
conservation. 
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b)	 Optimization of Agricultural Practices: By analyzing 
data on soil conditions, weather patterns, and crop health, AI 
can recommend sustainable farming practices that minimize 
environmental degradation. For instance, AI-driven precision 
agriculture can optimize water usage and reduce chemical inputs, 
thereby lessening the ecological footprint of rice cultivation on the 
wetland ecosystem. 

c)	 Environmental Monitoring and Assessment: AI can 
process data from various sources, such as satellite imagery and 
IoT sensors, to monitor environmental parameters including 
soil health, water quality, and biodiversity. This continuous 
monitoring enables the detection of ecological changes resulting 
from rice farming practices, facilitating timely interventions to 
mitigate adverse impacts. 

d)	 Enhancement of Ecosystem Services Evaluation: AI 
can assist in quantifying the ecosystem services provided by the 
Nyando Wetland, such as water purification, flood regulation, and 
carbon sequestration. Understanding these services’ value can 
promote conservation efforts and sustainable land-use strategies. 

This study assessed land-use changes in Nyando Wetland 
due to rice farming using AI-powered remote sensing techniques; 
evaluated the impact of rice farming on water quality using 
AI-based predictive analytics and analyzed the effects of rice 
production on biodiversity and ecosystem health using AI-driven 
ecological modeling. By leveraging AI in these areas, stakeholders 
can achieve a more sustainable integration of rice production 
within the Nyando Wetland ecosystem.

Justification for AI integration in determining the 
effects of rice production on nyando wetland, kisumu 
county

Integrating Artificial Intelligence (AI) into the assessment 
of rice production’s effects on the Nyando Wetland in Kisumu 
County is both timely and essential. The Nyando Wetland, 
part of the Lake Victoria Basin, is a vital ecosystem providing 
numerous environmental functions and socio-economic benefits. 
According to Omondi & Okeyo [29], the Nyando Wetland plays 
a crucial role in supporting biodiversity, water filtration, and 
local livelihoods through rice farming. However, intensified rice 
cultivation has led to significant ecological challenges, reduction 
in wetland size, decreased fish populations, and deteriorated 
water quality. AI technologies offer innovative solutions to 
monitor and mitigate these impacts. For instance, AI-driven image 
recognition algorithms can process satellite and drone imagery to 
detect changes in land use, vegetation cover, and water quality, 
thereby reducing the manual effort required for environmental 
monitoring. 

Additionally, machine learning models can predict ecosystem 
responses to agricultural practices by integrating historical 
environmental data, climate forecasts, and ecological parameters. 

This predictive capability enables stakeholders to anticipate 
potential adverse effects and implement proactive conservation 
strategies. Further, AI can optimize agricultural practices to align 
with environmental sustainability. In precision agriculture, AI-
based irrigation systems analyze sensor data to optimize water 
usage, reducing waste and preserving wetland hydrology. By 
integrating AI into these domains, it is possible to harmonize rice 
production with the ecological integrity of the Nyando Wetland, 
ensuring that agricultural development does not come at the 
expense of vital ecosystem services.

Increasing agricultural activities threaten the wetland’s 
ecological integrity through land degradation, water pollution, and 
loss of biodiversity [27]. In view of Wanjala et al. [4], traditional 
methods of monitoring environmental changes, such as field 
surveys and manual data collection, are often slow, expensive, and 
limited in accuracy. Therefore, integrating artificial intelligence 
(AI) offers a more efficient, cost-effective, and precise approach to 
assessing the environmental impact of rice farming in the region. 
AI-driven remote sensing technologies can provide real-time 
analysis of land use changes, enabling early detection of wetland 
encroachment and degradation [28]. Additionally, AI-powered 
predictive models can analyze water quality indicators such as 
pH levels, turbidity, and nutrient concentration, helping identify 
pollution sources and forecast future risks [30]. These insights 
allow policymakers and farmers to make informed decisions 
on sustainable agricultural practices while mitigating adverse 
environmental effects.

In addition, AI-based ecological modeling can assess 
biodiversity loss due to rice production by analyzing species 
distribution and habitat changes, supporting conservation 
strategies [27]. Musa et al. [28] elucidated that AI can also facilitate 
the development of decision support systems that optimize 
irrigation, fertilizer use, and land management, ensuring a balance 
between food security and wetland conservation. By leveraging 
AI, stakeholders can enhance environmental sustainability while 
maintaining agricultural productivity in Nyando Wetland.

Significance of AI integration in determining the effects of 
rice production on nyando wetland, kisumu county

The integration of artificial intelligence (AI) in assessing 
the effects of rice production on Nyando Wetland is crucial 
for promoting sustainable agriculture and environmental 
conservation. Nyando Wetland is a vital ecosystem that supports 
biodiversity, provides water filtration, and serves as a livelihood 
source for local farmers [27]. However, the expansion of rice 
farming has raised concerns about wetland degradation due to 
excessive water use, agrochemical pollution, and habitat loss. 
Traditional monitoring methods are often slow and resource-
intensive, making AI-driven technologies a more efficient and 
accurate alternative.
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AI-powered remote sensing and machine learning models 
can enhance the detection and monitoring of land-use changes, 
enabling early intervention to prevent wetland encroachment 
[14]. Additionally, AI-driven water quality assessment tools can 
analyze real-time data from sensors to track pollution levels and 
recommend corrective measures, helping to protect aquatic life 
and maintain ecological balance [30]. AI models can also assess 
biodiversity trends by identifying shifts in species distribution, 
allowing conservationists to implement timely protection 
measures.

Moreover, the adoption of AI in environmental monitoring 
supports data-driven decision-making for policymakers and 
farmers. AI-based decision support systems can optimize 
agricultural inputs such as water and fertilizers, reducing 
environmental harm while ensuring food security [15]. By 
providing precise and timely insights, AI integration helps 
balance agricultural productivity with wetland conservation, 
ensuring long-term sustainability for both the environment and 
the livelihoods of local communities.

Methodology

The methodology involved the following:

a)	 Data collection: Data was gathered from multiple 
sources, including satellite imagery, drone surveys, and IoT 
sensor networks. These tools provided real-time information on 
land use, water quality, and biodiversity patterns. AI-powered 
platforms like Google Earth Engine and remote sensing satellites 
(e.g., Sentinel-2) were used for spatial data acquisition. 

b)	 Data processing and preprocessing: The collected 
data was cleaned and preprocessed to remove inconsistencies 
and noise. Machine learning models such as convolutional 
neural networks (CNNs) were used for image classification, 
while statistical models help normalize and standardize data for 
accurate analysis.

c)	 AI model development and training: Supervised and 
unsupervised learning algorithms were employed to train models 
on historical and real-time data. AI techniques such as deep 
learning, decision trees, and support vector machines (SVM) were 
utilized to analyze wetland degradation patterns, water quality 
trends, and biodiversity changes.

d)	 Implementation and validation: The trained AI models 
were tested using validation datasets to ensure accuracy. Field 
surveys and expert reviews were used to validate the predictions 
generated by AI. If discrepancies arise, models underwent further 
refinement.

e)	 Deployment of decision support systems (DSS): 
Once validated, AI models will be integrated into user-friendly 
DSS platforms accessible to farmers, conservationists, and 
policymakers. These systems will provide actionable insights and 
recommendations for sustainable wetland management.

f)	 Monitoring and continuous improvement: AI 
models require continuous updates to enhance their predictive 
capabilities. Periodic retraining using new data ensures the 
system remains relevant in detecting environmental changes. 
Feedback from stakeholders is incorporated to improve usability 
and effectiveness.

Results and Discussion

This section presents the findings of the study as guided by 
the objectives. The study assessed how rice farming in Nyando 
wetland influences land-use and land cover changes in the area. 
This was done by using AI-powered remote sensing techniques. 
This involved analysis of temporal changes from the year 1995 to 
2025. The study quantified the areas covered by L. Victoria, the 
Nyando Wetland, rice plantation (rice paddies) and settlements 
in these selected years. Equally, the study evaluated the impacts 
of rice farming on water quality using AI-based predictive 
analytics. The study also analyzed the effects of rice production 
on biodiversity and ecosystem health using AI-driven ecological 
modeling. These were examined in the following categories:

Classification accuracy and model performance

Using Landsat imagery from 1995 to 2025 at five-year 
intervals (1995, 2000, 2005, 2010, 2015, 2020, and 2025), two AI-
based models including Random Forest (RF) and Convolutional 
Neural Networks (CNN) were employed for land use and land 
cover (LULC) classification. Sentinel-1 SAR data were also used to 
supplement imagery during cloud-affected seasons. The average 
classification accuracy achieved across all years was 93.2% for 
the CNN accuracy with a Kappa coefficient of 0.91 while Random 
Forest had 89.5% accuracy with a Kappa coefficient of 0.86. The 
models effectively distinguished between rice paddies, wetland 
vegetation, open water, built-up areas, and seasonal floodplains. 
The finding concurs with Yuan et al. [31], who established the 
utility of AI models in wetland classification with high reliability 
across multiple sensors. Satellite-derived changes were mapped 
using supervised classification and time-series analysis. Deep 
learning models such as U-Net and ResNet were trained to detect 
rice field patterns based on seasonality, phenological texture, and 
water regimes.

Temporal trends in land-use changes (1995-2025)

Expansion of rice farming

The study findings reveal that rice farming in Nyando 
Wetland increased significantly between the year 1995 and 
2000 i.e., 41030.5ha to 48263.2ha within the wards that the 
study captured (Nyalenda B, Kolwa Central, Kolwa East, Kobura 
Kanonyo Kanygwal, Ahero, North Nyakach, Central Nyakach, West 
Nyakach and Wangchieng). Between the year 2000 and 2005, a 
significant decline in rice paddies was observed (48263.2ha to 
40455.4ha). Several factors could have contributed to this. The 
period was marked by both environmental and socio-economic 
challenges in the region. Considering factors such as flooding 
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and climate variability, Nyando Wetland being a flood-prone 
area due to the seasonal overflow of River Nyando, this period’s 
frequent floods was likely to destroy rice paddies, making farming 
unpredictable and less viable as was depicted by GOK [32]. Also, 
climate variability such as erratic rainfall patterns and extended 
dry periods could have disrupted planting and harvesting cycles.

Decline in rice production during this period could have been 
attributed to by poor water management infrastructure. Rice 
irrigation systems in the Nyando basin, particularly around Ahero 
and West Kano, probably could have experienced significant 
degradation. Siltation of canals, lack of maintenance, and 
limited government investment led to reduced water efficiency. 
Inadequate drainage increased waterlogging, further reducing 
yields. Equally, this could have been as a result of Collapse or 
weakening of farmer cooperatives where many cooperative 
societies that managed inputs, credit, and marketing for rice 
farmers became defunct or inefficient during this period due 
to mismanagement and corruption. Farmers on the other have 
probably could have lost access to certified seeds, fertilizers, and 
fair market prices, leading to disinterest in rice farming as was 
argued by Ochieng [33].

Between the year 2005 and 2010, there was significant 
increase in rice paddies i.e., 40455.36ha to 51738.73ha. This 
was an increase of 11%. Generally, this could be attributed to by 
several policy, environmental, technological, and socioeconomic 
factors that collectively reversed the prior decline. The factor 
includes revitalization of irrigation infrastructure where the 
rehabilitation of Ahero and West Kano Irrigation Schemes by the 
National Irrigation Board (NIB) and support from donor agencies 
could have led to increased access to reliable water [34]. Also, 
desilting of canals, repair of intake structures, and improved water 
management systems enabled the expansion of rice cultivation. 
Similarly, this increase could be due to Government Investment 
and Policy Support where the Kenyan government increased 
investment in rice farming under the Economic Recovery Strategy 
for Wealth and Employment Creation (ERSWEC) and Vision 2030 
[35]. 

Introduction of the National Rice Development Strategy 
(NRDS) in 2008 promoted rice farming as a strategic crop and 
this could have affected Nyando Wetland rice production as 
well (Republic of Kanya, 2008). The other factor which could be 
attributed to this is land reclamation and utilization of marginal 
areas where previously uncultivated or underutilized wetland 
sections were reclaimed or converted for rice production due to 
improved drainage and water control. This could have been done 
under government-supervised programs and through farmer 
innovation as was argued by Onyango & Aseto [36].

The period between the year 2010 and 2015 showed a slight 
decline in Nyando wetland rice production coverage (51738.73ha 
and 51399.27ha). This was a decline of 1% and could be 
attributed to a combination of environmental, institutional, 

socioeconomic, and technological factors. Though government 
support had increased earlier, several challenges might have 
begun to undermine gains made during 2005-2010. Recurrent 
flooding and climate variability might have influence this in that 
increased frequency and intensity of floods, partly due to climate 
change and catchment degradation in the upper Nyando Basin, 
probably might have damaged rice fields and infrastructure. Some 
farmers possibly might have abandoned rice fields in flood-prone 
zones due to repeated crop losses.

Other factors could include land fragmentation and 
encroachment where increasing population pressure leads to 
fragmentation of farming plots and encroachment of rice fields 
for settlement, grazing, and small-scale horticulture. Possibly, 
some wetlands were also illegally reclaimed or diverted for other 
uses, reducing the overall hectarage as was posited by Onyango 
& Aseto [36]. Similarly, high input costs and limited credit access 
could have influenced this due to the fact that the rising cost of 
inputs (seeds, fertilizer, fuel) and lack of accessible, affordable 
credit discourages some smallholder farmers from expanding or 
continuing with rice cultivation as was contended by Mati et al. 
[37] and affirmed in the NIB report [38]. It is always known that 
limited access to pest management support and chemical inputs 
discourage sustained cultivation. Again, shifts in agricultural 
policy and focus could have attributed to this in that around this 
time, government and donor attention started shifting toward 
horticulture, dairy, and climate-resilient crops under climate-
smart agriculture frameworks. This may have inadvertently 
diverted resources and attention from rice farming [39,40].

The study noted a consistent decline in Nyando Wetland 
rice paddies from 2015 to 2025. The year 2015, it covered 
51399.27ha. In 2020, it covered 42616.78ha while in 2025 it 
covered 34639.09ha. That was 48%, 40% and 33% respectively. 
The percentages are as per the study area. The constant decline 
in Nyando Wetland rice production hectarage from 2015 through 
2020 and into 2025 can be linked to a combination of persistent 
structural challenges, climate change effects, socioeconomic 
pressures, and policy-level shortcomings. Among these factors 
include: increased climate change impacts where rising 
temperatures, prolonged droughts, and erratic rainfall patterns 
have increasingly disrupted rice production cycles not only in 
Nyando Wetlands but other parts of the world. Water scarcity 
during critical planting seasons and intensified flooding from 
River Nyando have led to abandonment of fields as was asserted by 
IPCC [41]; Otieno et al. [42]. Secondly, environmental degradation 
and wetland loss remain an important factor in that deforestation 
in upstream catchments and poor watershed management might 
have led to excessive siltation and degradation of Nyando Wetland 
ecosystems. This has reduced the ecological capacity of the 
wetland to support irrigation and sustainable agriculture as was 
contended by Lake Victoria Environmental Management Program 
II [43]; Wanyama et al. [44]. Another factor attributed to this is 
increased land use conflicts and encroachment.
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According to Kisumu County Itegrated Development Plan 
(2018-2022), growing population pressure and urban sprawl 
in Kisumu County have led to encroachment into wetlands for 
settlement, conversion of paddies into housing or commercial 
plots; competition from livestock and horticulture activities and 
informal land grabbing and absence of proper zoning laws further 
complicate land tenure and usage. This continues to reduce the 
rice farms in Nyando Wetlands of Kisumu County [45]; Onyango 

& Aseto [36]. Also, deterioration of irrigation infrastructure has 
remained a factor which impacts negatively on rice production. 
According to the Ministry of Water & Irrigation [46], Irrigation 
schemes like Ahero and West Kano have continued to suffer from 
inadequate maintenance, siltation, broken canals, and unserviced 
pumps. Limited budget allocation and overreliance on old 
infrastructure have discouraged large-scale rice farming [47]. The 
summary of these findings are as portrayed in Table 1 & Figure 1. 

	

Figure 1: Nyando Wetland Landuse Land Cover from 1995 to 2025.

Table 1: Temporal Nyando Wetland Land use and land cover changes.

Land Use 
Land 
Cover

Area_Ha 
1995

%Age 
1995

Area_Ha 
2000

%Age 
2000

Area_Ha 
2005

%Age 
2005

Area_Ha 
2010

%Age 
2010

Area_Ha 
2015

%Age 
2015

Area_Ha 
2020

%Age 
2020

Area_Ha 
2025

%Age 
2025

L. Victoria 52746.47 50% 47544.65 45% 52500.26 49% 36791.84 35% 38074.95 36% 39578.62 37% 40382.22 38%

Nyando 
Wetland

9094.55 9% 6814.07 6% 6992.5 7% 8806.31 8% 5892.36 6% 4426.85 4% 3926.43 4%

Plantation 41030.46 39% 48263.2 45% 40455.36 38% 51738.73 49% 51399.27 48% 42616.78 40% 34639.09 33%

Settle-
ment

3282 3% 3531.35 3% 6205.72 6% 8829.57 8% 10735.35 10% 19537.01 18% 26152.33 25%

Total 106153.48   106153.27   106153.84   106166.45   106101.93   106159.26   105100.07  

The information in table 1 can be presented graphically as portrayed in figure 1.

Figure 2a to 5b illustrate the progressive land use and land 
cover changes within the Nyando Wetlands over time, highlighting 
increasing anthropogenic encroachment. The intensifying red 
coloration, symbolizing settlement expansion, indicates a steady 
and pronounced conversion of wetland areas into residential 
zones. Concurrently, the light blue areas representing the wetland 
ecosystem show a noticeable reduction in spatial extent, while the 
light green areas denoting plantation or agricultural land remain 
relatively stable or expand marginally. These visual patterns 
underscore the growing pressure from human settlement on the 
wetland, leading to habitat loss and a decline in the ecological 
functionality of the Nyando Wetland system.

A comparative analysis between 1995 and 2025 reveals a 
significant degradation of the Nyando Wetlands, primarily due to 
the expansion of human settlements into formerly intact wetland 
areas. This land use transformation has resulted in substantial 
habitat fragmentation and the loss of critical biodiversity, thereby 
disrupting essential ecological processes such as nutrient cycling, 
water filtration, and species migration. The encroachment has 
diminished the wetland’s ecological integrity and resilience, 
compromising its ability to provide vital ecosystem services.

Loss of wetland vegetation

The study noted a significant decrease in Nyando Wetland 
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between the year 1995 and 2000 (9094.55ha to 6814.07ha). The 
vegetation loss in Nyando Wetland between 1995 and 2000 can be 
attributed to a combination of anthropogenic (human-induced) 
and natural factors, occurring within a broader context of 
population pressure, poor land use planning, and environmental 
degradation in the Lake Victoria Basin. In this loss of decrease, 
it is believed that native wetland vegetation (primarily papyrus 
and sedges) has been lost significantly. The CNN models revealed 

progressive fragmentation, especially near floodplains and 
channelized zones. Vegetation health, measured via NDVI, showed 
a consistent decline in wetland buffer zones adjacent to rice fields. 
This is attributed to both land conversion and contamination 
from fertilizers and herbicides as was contended by Lekarkar et 
al. [48]. Similarly, habitat connectivity was reduced consistent 
with findings from Mugo et al. [49] who noted a trend toward 
landscape simplification in Lake Victoria’s riparian wetlands. 

Figure 2a: Nyando Wetland Landuse Land Cover 1995.

Figure 2b: Nyando Wetland Landuse Land Cover 2000.

Figure 3a: Nyando Wetland Landuse Land Cover 2005.

Figure 3b: Nyando Wetland Landuse Land Cover 2010.

Expansion of subsistence and commercial agriculture is 
another factor attributed to loss of wetland vegetation within this 
period since the study noted there was a significant expansion of 
rice farming as well as smallholder mixed farming. This involved 
draining wetlands, clearing native vegetation, and converting 
wetland margins into farmland. The study also noted population 
growth and increased human settlement during this period where 

rapid population growth in Nyando Sub-county and surrounding 
areas in Kisumu led to the expansion of informal settlements 
into wetland areas. Encroachment into the wetlands for housing, 
especially by the landless or displaced households, resulted in 
clearing of natural vegetation, particularly papyrus and native 
grasses (Kenya National Bureau of Statistics [50,51].
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Other factors might include overharvesting of papyrus and 
other vegetation; deforestation and catchment degradation 
in the upper Nyando catchment (Nandi and Kericho hills) 
which might have led to heavy runoff, increased siltation, and 
sediment deposition in the wetlands consequently altering the 
hydrology and nutrient dynamics, inhibiting growth of native 
aquatic vegetation. Also, construction of drainage and irrigation 
infrastructure could have influenced this in that development of 
drainage canals and construction of dykes for rice irrigation and 
flood control disrupted the natural hydrology of the wetland. 
Possibly, these structures diverted water away from some areas, 
drying them out and leading to vegetation loss.

The study observed a slight constant increase in in Nyando 
Wetland vegetation between 2000 through 2005 and into 2010. 
A mix of ecological recovery, targeted conservation interventions, 
changes in land use dynamics, and policy-driven environmental 
awareness can be attributed to this. While the increase was 
modest, several factors played a role in halting and partially 
reversing the trend of vegetation loss observed in the 1990s. 
These include implementation of the Environmental Management 
and Coordination Act (EMCA, 1999) whose operationalization in 
early 2000s empowered the National Environment Management 
Authority (NEMA) to regulate and protect sensitive ecosystems.

Secondly, the initiation of the Lake Victoria Environmental 
Management Programme (LVEMP-I) Initiatives which supported 
wetland rehabilitation, community education on sustainable 
wetland uses and papyrus replanting and conservation pilot 
projects in 2000 and 2005. These efforts led to localized 
regeneration of native vegetation such as papyrus (Cyperus 
papyrus) and wet grasslands. Similarly, the introduction of 
Agroforestry and Buffer Zone Programs where NGOs and 
community-based organizations, often in collaboration with 
government agencies, promoted Agroforestry and riparian tree 
planting and established of wetland buffer zones. These efforts 
stabilized riverbanks and encouraged re-establishment of native 
vegetation. Wetlands were formally recognized as protected 
areas, and environmental impact assessments (EIAs) became 
mandatory for developments affecting wetland zones.

The study noted a constant decease in Nyando Wetland size 
in the study area between the year 2010, 2015 through 2020 into 
2025. The reduction in Nyando Wetland hectarage between 2010, 
2015, 2020, and 2025 is largely the result of human-driven land 
use changes, population pressure, and climate-related ecosystem 
stressors. This period reflects a sustained decline in wetland area, 
especially due to development pressures and weak enforcement 
of environmental policies. Among the factors attributed to this 
include intensifying agricultural encroachment where expansion 
of rice, sugarcane, maize, and vegetable farming into wetland 
zones possibly led to large-scale conversion of natural wetlands 
into farmlands. This was especially pronounced around Ahero, 
Miwani, and Awasi, driven by food demand and subsistence needs 
as was contended by Onyango & Aseto [36]. Secondly, urbanization 

and infrastructure development are also attributed to this in that 
rapid expansion of Kisumu city and surrounding urban centers 
(e.g., Ahero, Muhoroni) drove and continues to drive demand 
for land, leading to settlement construction in wetland margins, 
infrastructure projects (roads, housing, electricity lines) cutting 
through wetlands as well as land speculation and informal land 
allocations further degraded the wetland [45,52]. Thirdly, the 
area has been characterized by overexploitation of wetland 
resources such as overharvesting of papyrus, fuelwood, sand, 
and clay which has degraded vegetation cover and destabilized 
soils, leading to permanent loss of wetland ecosystems. Lack of 
sustainable harvesting techniques and community regulations 
exacerbated degradation. Fourth, the rising population in Nyando 
sub-county has increased demand for settlement and farmland, 
especially among land-insecure communities. This has also led to 
land fragmentation (Republic of Kenya, 2019). 

Fragmentation of communal land and family inheritance 
has led to small plots carved out from wetlands, accelerating 
their conversion. The fifth factor is climate change effects where 
erratic rainfall, prolonged dry spells, and more frequent flooding 
events have disrupted natural wetland recharge, altered wetland 
boundaries, created conditions where vegetation cannot recover, 
and wetlands dry up. Flooding also pushes people to settle 
in temporarily dry areas that are part of the wetland system 
[41,42]. The last factor attributed to this is limited community 
ownership and benefit where many communities living around 
Nyando wetlands receive limited tangible benefit from wetland 
conservation. Consequently, wetlands are viewed as underutilized 
land, and are often cleared for short-term economic gain [36,53].

The study noted a constant increase of settlements in Nyando 
Wetlands between the year 2000 to 2025. This constant increase in 
settlement attribute to a multiple interlinked demographic, socio-
economic, environmental, and policy-related factors. This growth 
has intensified from the early 2000s into the 2020s and continues 
to impact the wetland’s ecological integrity. These factors include 
perceived availability of land in wetlands. According to the 
Kenya National Wetlands Conservation and Management Policy 
[54], wetlands are often perceived as idle or marginal lands, 
making them attractive for settlement by the landless or recently 
displaced. Traditional beliefs and legal ambiguities around wetland 
ownership have made encroachment easier. Secondly, road and 
infrastructure development have influenced this in that expansion 
of feeder roads, power lines, and irrigation canals has opened up 
previously inaccessible wetland areas to human settlement. These 
developments unintentionally promote encroachment and make 
remote wetland regions more habitable. Similarly, according to 
[53,55], limited alternative livelihood options which narrows 
down to high poverty levels and lack of employment in Nyando 
Sub-county have forced people to migrate and settle in wetlands 
where they can practice subsistence farming, harvest papyrus 
and fish and build shelter without rent or land purchase costs. 
Equally, lack of clear wetland boundaries and land use zoning has 
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also contributed to encroachment of settlement into wetlands. 
Many wetland boundaries are not demarcated or surveyed, 
creating disputes or confusion about where wetlands begin or 
end. Absence of proper land use plans and zoning enforcement 
in Nyando Basin has resulted in overlapping uses: settlement, 
farming, grazing among others [43]. According to the County 

Government of Kisumu Spatial Plan 2020-2030 [56], expansion 
of informal and peri-urban settlements affects Nyando Wetlands. 
Urban sprawl from Kisumu city and Ahero town has led to 
informal settlement growth on wetland fringes. New access roads 
and speculative real estate development have attracted settlers to 
low-cost, unregulated land parcels in the wetlands. 

Figure 4a: Nyando Wetland Landuse Land Cover 2015.

Figure 4b: Nyando Wetland Landuse Land Cover 2020.

Figure 5a: Nyando Wetland Landuse Land Cover 1995.

Figure 5b: Nyando Wetland Landuse Land Cover 2025.

Water body dynamics

The study employed an AI-assisted Normalized Difference 
Water Index (NDWI) using multi-temporal Landsat (TM, ETM+, 
OLI) and Sentinel-2 imagery, processed in combination with 
machine learning classification (Random Forest and CNNs). 

According to McGiven [57], the integration of AI-driven NDWI 
analysis provides a precise and scalable method to monitor 
wetland water body changes over time, offering significant 
advantages in spatial resolution, accuracy, and automation. NDWI 
was calculated as follows:
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NDWI = (Green – NIR) / (Green + NIR)

Where Green = green spectral band, NIR = near-infrared 
spectral band

This approach enabled enhanced detection and classification 
of surface water extent in Nyando Wetlands across time periods 
(1995, 2000, 2005, 2010, 2015, 2020, 2025).

The findings of the study indicated the following:

a)	 Spatiotemporal water dynamics: AI-assisted time 
series analysis showed seasonal and inter-annual variability 
in water cover. The approach enabled precise identification of 
drivers such as sedimentation, seasonal flooding, and channel 
migration that influenced water coverage fluctuations. Floodplain 
areas showed temporary increases in NDWI post-rainy seasons 
but failed to retain water over time due to sedimentation and 
water abstraction. For instance, a study by Muthoni & Otieno 
[58] revealed that the Ahero irrigation expansion area showed 
NDWI-based surface water decline of 25% from 2005 to 2020, 
corroborated by land use maps and hydrological models. 

b)	 Surface water extent decline: NDWI values above 0.3 
were used to delineate open water. Results showed a reduction in 
open water bodies from approximately 6,200ha (1995) to 4,780ha 
(2025). Persistent decline in NDWI values (<0.2) across lower 
wetland areas indicates loss of aquatic habitat, especially for 
papyrus beds, hippos, and migratory birds (Masese et al. 2012). 
The wetlands’ water retention ability has significantly reduced, 
lowering their resilience against floods and dry season flows. 
Peak shrinkage occurred between 2010 and 2015, attributed to 
prolonged dry spells and intensified land use activities. McGiven 
[57] contended that as rice paddies expand, they replaced 
backwater zones and cutoff oxbow areas that once functioned as 
seasonal reservoirs.

c)	 Land conversion hotspots: Overlaying NDWI with AI-
based land use classification identified hotspots of water body 
loss, mainly in lower Nyando and Ahero irrigation zone, where 
water pixels were replaced by cropland and settlement pixels. 
From 1995 to 2025, over 35% of permanent water areas were lost 
to rice farming and informal settlements.

d)	 Accuracy and improvement with AI: AI-assisted NDWI 
significantly improved classification accuracy over traditional 
thresholding methods, with an overall accuracy of 91.4% and 
Kappa coefficient of 0.88. Machine learning algorithms reduced 
errors in mixed pixels (e.g., wet soil vs shallow water) that 
traditionally challenged water body delineation.

Spatial patterns and hotspots

Using Object-Based Image Analysis (OBIA) integrated with AI 
classifiers such as Random Forest, Support Vector Machines, and 
Convolutional Neural Networks, multi-temporal high-resolution 

satellite images (Landsat and Sentinel) were segmented and 
classified to detect land cover transitions and spatial dynamics 
within the Nyando Wetlands. The results revealed that:

i.	 Hotspot identification: Three key degradation hotspots 
were identified. These included Ahero Irrigation Scheme where 
transition from marsh to irrigated rice farms was witnessed; 
Lower Nyando Wetland Buffer where encroachment from informal 
settlements and sugarcane farming was evidenced and West Kano 
Plains which showed persistent conversion of riparian zones to 
grazing and agriculture. These hotspots showed consistent high-
intensity changes in wetland-to-agriculture conversion, with high 
Gi z-scores (>2.5)* indicating statistically significant clusters of 
change.

ii.	 Spatial pattern shifts: The study noted that from 
1995 to 2025, the Nyando Wetlands experienced substantial 
fragmentation and patchiness of natural wetland cover, especially 
in Ahero, Awasi, and lower Nyando floodplain zones. AI-assisted 
OBIA classified the landscape into classes: open water, marshland, 
agriculture, settlements, bare land, and riparian vegetation. In 
1995, natural wetland and water bodies covered 65% of the area. 
By 2025, this had reduced to 37%, with a corresponding increase 
in agriculture (by 40%) and settlements (by 18%). The study 
noted that between 1995 and 2025, Nyando Wetlands underwent 
significant spatial transformations, characterized by increased 
land fragmentation, wetland shrinkage, and the emergence of 
anthropogenic degradation hotspots. The use of AI-enhanced 
OBIA provided a powerful tool to accurately classify, detect, and 
quantify these changes, offering a foundation for data-driven 
restoration and protection efforts.

iii.	 Pattern metrics analysis: Landscape metrics calculated 
from OBIA segments such as patch density, edge density, shape 
index) showed a 66% increase in patch density (1995–2025), 
indicating fragmentation, a 42% increase in edge density, reflecting 
encroachment into wetland zones and declining mean patch size, 
especially for open water and marshland classes. Deep learning-
based landscape metrics showed a sharp increase in patch density 
and reduction in core wetland areas, indicating fragmentation and 
ecological pressure. These spatial trends mirror regional findings 
by Yuan et al. [31] on AI-supported landscape change modeling in 
African wetlands.

The study noted that while traditional pixel-based 
classification struggles in wetland zones due to spectral similarity 
between land-water-vegetation interfaces, AI-assisted OBIA 
overcomes this by using object geometry, texture, and contextual 
features, enhancing classification accuracy and interpretability 
(Blaschke et al. 2010). This approach also enables automation and 
replicability for long-term wetland monitoring.

The application of AI-enhanced OBIA for analyzing Nyando 
Wetland spatial patterns provides a high-resolution, object-level 
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understanding of landscape dynamics over time. The results 
reveal critical insights into the drivers, spatial intensity, and 
fragmentation of land cover change. The study noted that the 
drivers of spatial pattern change include population pressure 
and demand for farmland, particularly for rice and sugarcane; 
infrastructural development such as road expansion and urban 
sprawl like in Ahero and climate variability, which has altered 
water regimes, making some wetland areas seasonally dry 
and thus susceptible to cultivation. These drivers align with 
community reports and empirical findings from other Lake 
Victoria Basin wetlands [53,59].

iv.	 Environmental and ecological implications

On ecological and hydrological implications, the study noted 
that spatial fragmentation has led to disruption of hydrological 
connectivity, reducing flood retention and groundwater recharge 
capacity. It has also led to loss of habitat corridors for wetland-
dependent species and microclimatic alterations, with drier and 
hotter conditions in converted zones (Masese et al. 2012). The 
identified hotspots show intense anthropogenic influence and 
warrant urgent restoration and enforcement of land-use zoning. 
The AI-powered analysis of multi-source environmental data 
(satellite imagery, field data, remote sensors, and biodiversity 
surveys) from 1995 to 2025 reveals alarming ecological 
degradation and loss of ecosystem functions in the Nyando 
Wetlands. AI methods including deep learning, random forest 
classifiers, and spatiotemporal modeling were used to detect, 
predict, and quantify environmental and ecological changes. 
The study findings reveal a wetland-to-agriculture conversion 
rate of 38% between 1995 and 202, Over 2,000 hectares of 
papyrus-dominated habitats have been lost, particularly in 
Ahero, Nyamasaria, and lower Nyando floodplain zones. The 
study also confirmed loss of vegetation cover by AI-modeled 
Normalized Difference Vegetation Index (NDVI), showing a 25% 
drop in average greenness indices since 1995. AI-based species 
distribution models (SDMs) show that some wetland bird and fish 
species have retreated to small, fragmented habitat islands. This 
isolation is expected to reduce gene flow and long-term survival. 
Equally, invasive species proliferation has been witnessed 
especially in disturbed zones. Wetland provisioning services like 
fish breeding, medicinal plant harvesting, and fodder availability 
have reduced drastically, affecting household resilience and food 
security.

On hydrological and water quality degradation, AI-integrated 
hydrological modeling revealed a 25% reduction in seasonal flood 
retention capacity due to fragmentation and sedimentation of 
wetland channels, declining water quality based on increased AI-
detected TSS (Total Suspended Solids), nitrates, and phosphates 
in water samples between 2000 and 2025. Data from AI-fused 
sensor networks showed increased eutrophication trends in 

wetland water bodies, exacerbated by fertilizer runoff and 
low flow periods. Similarly, on biodiversity and habitat loss, 
object-based AI models used on Sentinel-2 imagery and field 
observations confirmed a sharp decline in fish nursery habitats 
and bird nesting areas, especially for species. Estimated decline 
in wetland biodiversity by 42%, with amphibians and wetland-
dependent birds most affected. It is believed that the Nyando 
Wetlands’ carbon sequestration capacity has dropped between 
1995 and 2025 due to vegetation loss and soil degradation. Water 
quality has been impaired as pollution from upstream agriculture 
and sediment loading has degraded the wetland’s capacity to act 
as a natural water filter. The disruption of flood pulse dynamics 
has made downstream communities (e.g., Nyamasaria) more 
vulnerable to flooding during wet seasons and water scarcity 
during dry periods. Communities around the wetland increasingly 
depend on unsustainable land-use practices such as charcoal 
burning and seasonal farming, exacerbating ecological stress. 
Lack of enforcement of wetland boundaries and buffer zones has 
led to human-wildlife conflicts and reduced ecosystem buffering 
capacity.

In general, between 1995 and 2025, Nyando Wetlands have 
experienced serious environmental and ecological degradation. 
AI-assisted approaches have revealed a clear trajectory of decline 
in wetland functionality, biodiversity, and ecosystem services. 
These tools are essential for early warning systems, restoration 
targeting, and adaptive wetland management planning. For 
instance, in hydrological alteration, AI-based hydrological models 
trained on Landsat and Sentinel data shows significant changes in 
water retention patterns. The hydroperiod (duration of seasonal 
flooding) shortened by approximately 21 days between 2000 and 
2025, primarily due to increased bunding and artificial drainage 
associated with rice cultivation. Lekarkar et al. [48] noted similar 
impacts in the Nyando catchment, emphasizing the role of land-use 
change in altering both surface and subsurface water availability. 

On soil and vegetation health, Vegetation indices (NDVI, SAVI) 
in wetland margins are shown to have declined by an average 
of 0.13 over the study period. AI-enhanced regression analysis 
correlated these declines with proximity to rice fields, suggesting 
nutrient leaching and herbicide drift are likely contributing 
factors. Wijayanto et al. [60] found similar impacts in Indonesian 
rice landscapes, linking AI-classified land conversions with 
declines in native plant vigor. On biodiversity and habitat loss, 
using species distribution modeling (SDM) and CNN-based 
habitat mapping, the study identified significant habitat loss 
for wetland birds, amphibians, and papyrus-dependent insects. 
Critical biodiversity corridors have become fragmented, and edge 
effects have increased due to cultivation pressure. Yuan et al. [31] 
and Mugo et al. [49] both emphasized the ecological consequences 
of wetland fragmentation, especially in biodiversity hotspots like 
Lake Victoria Basin.
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This study demonstrates that the integration of AI-powered 
remote sensing tools significantly enhances the detection and 
analysis of land-use change in wetland systems like Nyando. 
While rice farming has expanded and supported livelihoods, it 
has resulted in substantial ecological impacts including wetland 
degradation, hydrological alteration, and habitat loss. Continuous 
monitoring and proactive zoning policies are urgently needed to 
balance agricultural development with wetland conservation.

Baseline water quality & nutrient loading trends

According to Adunde et al. [61], the socioecological surveys 
and physicochemical data collected from the Nyando floodplain 
(Ombeyi and surrounding regions) reveal significant negative 
correlations between rice farming and water quality parameters. 
Dry-season nitrate and phosphate levels increased, and fish 
abundance declined (r = –0.323, p = 0.001; r = –0.481, p = 0.001, 
respectively). A reduction in wetland area due to conversion to 
rice plots has also been revealed. These patterns are consistent 
with observations in other East African irrigation wetlands such 
as Doho scheme, Uganda where rice cultivation increased nutrient 
load and lowered dissolved oxygen, EC and pH during the dry 
season. 

Baseline biodiversity and habitat condition

Prior field studies on Nyando Wetland revealed that plant 
species richness and community composition are strongly 
influenced by water depth and human livelihood activities [62]. 
Greater conversion of papyrus-dominated habitats to agriculture 
corresponded to reduced plant diversity and shifts toward 
disturbance-tolerant species. Bird surveys in the adjacent Nyando 
Sugar Belt identified 122 species, but wetlands under agricultural 
pressure hosted mostly habitat-generalist and non-forest 
species, with fewer conservation-significant wetland specialists. 
Ecosystem-service assessments confirmed that wetland 
conversion undermines regulating services critical to biodiversity 
[63]. Using high-resolution time-series Landsat and Sentinel 
data across 1995–2025, AI models including CNN and object-
based classifiers were trained to map habitat types and detect 
fragmentation patterns associated with agricultural expansion.

Complementing remote sensing, species distribution 
models (SDMs) were trained using occurrence records of 
papyrus-dependent birds and amphibians. These combined 
methods allowed spatiotemporal detection of habitat loss and 
fragmentation effects. By 2025, AI-derived habitat metrics show 
a 45-60% reduction in papyrus and emergent wetland vegetation 
compared to 1995. Fragmentation indices such as core patch size 
decline, edge density increase increased by over 35%, signaling 
serious habitat alteration. An NDVI and structural texture 
analyses indicated lower vegetation vigor in wetlands adjacent to 
cultivation zones. These patterns corroborate earlier observations 
by Rongoei et al. [62] on species composition shifts and ecological 

degradation in areas with water level alteration and human 
land use. The study also notes a decline of specialized papyrus 
swamp birds with modeled loss of over 60% of their estimated 
habitat range by 2025; increase in generalist and agricultural 
landscape species near rice fields, reducing biodiversity balance. 
Amphibian SDMs indicate loss of breeding microhabitats due to 
drainage and vegetation clearance. These findings echo results 
from comparative wetland amphibian studies elsewhere in 
Kenya, where habitat loss reduces species richness and functional 
diversity. Similarly, the study notes a decline of regulating services 
such as water purification, nutrient cycling, and erosion control, 
as documented by Maithya et al. [63] in Nyando Wetland. Loss of 
habitat integrity and connectivity reduces functional resilience, 
increasing susceptibility to invasive species, algal overgrowth, and 
reduced carbon sequestration capacity.

AI’s role in management and conservation planning

The study notes that AI-enabled analytics facilitate predictive 
habitat loss scenarios, projecting biodiversity decline under 
continued agricultural expansion; real-time monitoring, 
integrating remote sensing with field-based biodiversity 
surveys and conservation planning support for designing buffer 
zones, adaptive irrigation practices, and restoration priorities. 
These approaches align with broader AI-for-conservation 
methodologies that have proven effective in monitoring species, 
habitat integrity, and land-use impacts [64]. AI-driven remote 
sensing and predictive modeling demonstrate that rice farming 
in Nyando Wetland has inflicted significant biodiversity loss 
particularly affecting specialist wetland flora and fauna and 
degraded ecosystem functions supporting wetland health. 
Continued agricultural expansion without strategic zoning, 
habitat restoration, and biodiversity safeguards poses long-term 
threats. AI tools offer critical decision-support platforms for real-
time monitoring, habitat-risk forecasting, and informed wetland 
management interventions.

Conclusion

AI integration plays a crucial role in assessing the 
environmental effects of rice production on Nyando Wetland, 
Kisumu County. By utilizing remote sensing, machine learning, 
and predictive analytics, AI enhances the ability to monitor 
land-use changes, water quality, and biodiversity impacts [65]. 
These technologies provide real-time data that improve decision-
making and sustainable agricultural practices, minimizing 
ecological degradation [1]. Furthermore, AI-driven models help in 
predicting future trends in wetland health, guiding policymakers 
in formulating conservation strategies [66]. However, challenges 
such as limited access to AI infrastructure, high implementation 
costs, and inadequate technical expertise hinder widespread 
adoption [67]. Addressing these barriers through capacity-
building initiatives and investment in digital agriculture can 
optimize AI applications for sustainable rice farming in Nyando 
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Wetland. Thus, AI-driven approaches offer a viable solution for 
balancing agricultural productivity with wetland conservation, 
ensuring ecological and economic sustainability in Kisumu 
County [68-83].

Recommendation

To enhance the effectiveness of AI integration in assessing the 
effects of rice production on Nyando Wetland, Kisumu County, 
several key strategies should be adopted.

i.	 Investment in AI-driven remote sensing and Geographic 
Information Systems (GIS) should be prioritized to enable 
continuous monitoring of wetland changes and water quality. 

ii.	 Collaboration between government agencies, research 
institutions, and farmers is essential for data sharing and capacity 
building to ensure proper AI application in sustainable agriculture. 

iii.	 Policymakers should establish regulatory frameworks 
to guide ethical AI deployment, ensuring that technological 
advancements align with environmental conservation goals. 

iv.	 Financial and technical support should be extended to 
local farmers to facilitate the adoption of AI tools, particularly 
in predictive modeling for sustainable land and water resource 
management. 

v.	 Incorporating AI in decision-making processes 
through real-time data analytics can enhance policy formulation, 
balancing rice production with wetland conservation efforts. By 
implementing these strategies, AI can serve as a powerful tool 
for mitigating the environmental impact of agriculture while 
promoting sustainable development in Nyando Wetland.
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