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Introduction

Disasters have been an integral part of human life since the 
dawn of human existence. However, over the years, new risks and 
threats have emerged, increasing the likelihood of new disasters 
and the resulting crises. War is one of the most destructive disas-
ters, with its widespread impact on conflict zones causing signifi-
cant economic and social damage, perhaps more devastating than 
any natural or man-made phenomenon [1]. In Syria, the war has 
affected the entire country intermittently since 2011, during the 
period of peaceful protests, and continued until 2024. The war 
has claimed the lives of more than 618,000 people, left thousands 
missing, and displaced millions, according to correspondents and 
news agencies. It has also left many areas devastated and inacces-
sible due to the remnants of war and the rugged terrain caused by 
bombing. The total area of the war zone in Syria, approximately 
185,180 square kilometers, has also caused massive losses to in-
frastructure and crops [2]. Topographic measurements are one of 
the most important investigations in disaster areas, including war 

disasters, where slopes affect the surrounding land in terms of 
soil erosion, earthquakes, and buildings targeted by weapons be-
cause of war. Studies have shown that areas with slopes are more 
susceptible to destruction and building collapse than flat areas, 
as well as the presence of caves under cities or groundwater that 
affects buildings [3].

Automatic point cloud classification has become one of the 
most important research areas in various fields, particularly in 
topographic measurements and computer vision [4]. It has been 
widely used in various fields, including determining building 
heights, establishing level points, and creating plans or maps of 
the surveyed area [5]. From a computer vision perspective, it has 
also been used in autonomous driving, virtual reality, and robot-
ics [6]. In the same context, several tools such as Synthetic Aper-
ture Radar (SAR) can be used, which is an effective tool in disas-
ter management as it can obtain images that are not affected by 
weather conditions, but requires high accuracy and is expensive 
to operate [7]. Drone images are also used to conduct field dam-
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age surveys and take topographic measurements [8]. Evaluating 
the three-dimensional surface topography is crucial in many cases 
where modern data collection tools are used [9]. Interferometric 
measuring devices are particularly important in this case, given 
the time required for measurement. Finally, it is important to note 
that the accuracy and comparability of the tools used must be 
evaluated with traditional measuring devices [10]. In this paper, 
a three-dimensional point cloud of the study area was used to an-
alyze and map affected areas requiring immediate response [11]. 
In this context, the integration of information extracted through 
Geographic Information Systems (GIS) and Remote Sensing (RS) 
offers tremendous potential for identifying, monitoring, and as-
sessing war disasters [12].

High-resolution UAV imagery, which has become available in 
recent years, has increased the usefulness of RS data in disaster 
management [13]. The damage status of individual buildings and 
infrastructure can be determined without having to visit disaster 
sites [12]. This facilitates and ensures work safety, especially in 
hazardous areas, given the difficulty of accessing war-prone areas 
[14]. A Mavic 2 Pro drone equipped with a high-resolution camera 
is used to monitor the study area, which also allows for analyzing 
the damage to individual buildings as well as the roads.

The novelty and the main contribution of this paper can be 
summarized as follows:

a.	 Building and road damage classification according to the 
ability of restoration.

b.	 Full series suggested algorithms to extract and classify 
damage within war-affected areas.

c.	 Testing different algorithms for data classification, DTM 
construction, and contour line drawing.

d.	 Safe topographical work assessment within disaster ar-
eas.

Related works 

In the literature, numerous studies have been conducted on 
topics related to disaster management and damage assessment 
in disaster areas. Input data classification is an important proce-
dure for assessing damaged buildings. The aerial images are con-
sidered as the main important input data; indeed, they are easily 
accessible, easy to use, and easy to process. Several studies have 
been discussed in this field, including a comparison between au-
tomatic detection methods for damaged buildings from remote 
sensing and satellite sensor images, along with manual damage 
identification using satellite imagery [15]. Satellite imagery from 
three satellites (Skysat, GE-1, and WV-3) was compared. The re-
sults confirm the ability to quickly identify damaged areas and 
achieve a rapid response to reduce losses and save lives [16]. A 
Decision-Level Damage Estimation (DLDE) method was suggest-
ed to create a building damage map using high-resolution satel-

lite imagery and Light Detection and Ranging (LiDAR) data. This 
is done by analyzing texture in the first step, followed by using a 
Support Vector Machine (SVM) classification algorithm to extract 
damaged buildings. A damage score is then calculated based on Li-
DAR and satellite images for each building. These damage scores 
are combined to obtain the final damage score for the building 
[17]. The use of RS data for building damage assessment was also 
suggested, and a LiDAR-based aerial damage assessment meth-
odology using a density-based algorithm was proposed. Results 
included the ability to identify building structures, extract damage 
characteristics, and determine the extent of damage to individual 
building properties [18]. 

Drone imagery was used widely to identify the damaged 
buildings in urban areas due to earthquakes through stages: one 
to distinguish buildings outside the urban context (urban clas-
sification), and the other to identify damaged structures (build-
ing classification) [19]. These approaches used elevation-based 
algorithms based on Digital Surface Model (DSM) [20]. This has 
proven effective in detecting both severe damage and completely 
collapsed buildings [19]. Nex et al. [21] also discussed the focus of 
most of its research on classifying buildings into general damage 
categories, with limited attention paid to classifying specific types 
of damage. In this context, MaskR-CNN and ResNet50 techniques 
are used to detect wall collapse damage in images by segmenting 
images captured by drones [21]. Moreover, mobile mapping imag-
es are employed to study the collapse of historic buildings result-
ing from natural and human-made disasters by the basis on image 
segmentation, which has been used to detect damaged buildings 
in the aftermath of disasters [22]. 

At this stage, it is important to note that LiDAR data was con-
sidered one of the important inputs to study damaged buildings. 
Damage severity assessment using digital images and laser scan-
ner data is widely discussed in literature, e.g., determination of 
the damage to granite rocks. The obtained results show that the 
Fuzzy K-Means algorithm achieved a high-quality result [23]. Au-
tomated multi-class structural damage assessment of buildings 
was analyzed using a machine learning model trained on Virtu-
al Laser Scanning (VLS) data, and a classifier was then used to 
assess building damage scores [24]. Indeed, disaster area data 
classification using machine learning represents a hot research 
spot [16]. Change attributes were determined for each object, and 
damaged and undamaged building parts were then identified us-
ing a clustering approach. Classifying damaged areas depending 
on the disaster type is also crucial, particularly for earthquake 
disasters. The evaluation of deep learning in an earthquake-af-
fected area was tested through four network architectures: U-Net, 
LinkNet, FPN, and PSPNet. Various performance metrics were 
adopted, such as accuracy, precision, recall, F1 score, specificity, 
AUC, and IoU. The results indicated that FPN and U-Net were the 
high-performing models based on the desired performance met-
ric. Concerning the hurricane disaster, it has been discussed how 
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to improve the initial assessment of post-disaster damage using 
drone imagery after the hurricane and then applying artificial in-
telligence techniques to determine the initial assessment of Hur-
ricane Dorian [25].

Datasets

The data used in this paper are UAV images of Kafranbel town 
in the Idlib city countryside, taken using a Mavic 2 Pro drone to 
identify areas affected by the war. These images show the targeted 
area, a small part of the city of Kafranbel. The study area contains 
both intact and damaged buildings. The red box in Figure 1 shows 
damaged buildings. After capturing the UVA images, a 3D point 
cloud is calculated from them by considering a great overlap be-
tween neighboring images. For this purpose, Pixed 4d software is 

used, which can recognize the detected image order according to 
the fly strips. One of the limitations is the considerable calcula-
tion time cost, in addition to the need for a high-speed computer. 
Table 1 illustrates the characteristics of the measured 3D point 
cloud that covered the project area (Figure 2), which is calculated 
from UAV images using Pixed 4d software. Though the obtained 
point density is considerably high (350 points/m2), the point ac-
curacy is still modest regarding the image resolution (1.58 cm/
pixel) and the automatic matching errors. However, the accuracy 
can be estimated at ±60 cm. To improve this accuracy, UAV LiDAR 
scanning can be used instead of UAV images. The 3D point cloud 
of the study area (Figure 3) is of 206,1977 points, showing the 
area in detail, such as ground, streets, green areas, and intact and 
damaged buildings.

Figure 1: (a) Mavic 2 Pro UAV; (b) UAV image of the study area containing damaged buildings; red box surrounds damaged 
buildings.

Table 1: The characteristics of measured 3D point cloud from UAV images. 

Point density 350 point/m2

Mean flying height 67.4m

Number of captured mages 452 images

Image resolution 20 Megapixels

Camera model L1D-20C

Exposure time 1/200 second

Camera focal length 10.26mm

Maximum aperture diameter 3.66mm

Minimum aperture diameter 0.93mm

Image resolution 1.58 cm/ Pixel
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Figure 2: Visualization of a 3D point cloud of the target area; the red arrow indicates the road, and the green arrow indicates the 
natural terrain.

Figure 3: Workflow of suggested approach.

Methods

The schematic diagram presented in Figure 3 illustrates the 
suggested approach for extracting damaged buildings and roads, 
along with the analysis of the above-ground and ground classes. 
First, the point cloud is classified into two classes: ground and 
non-ground classes, where the ground class is required to recog-
nize the road damages and then restore them. The ground class is 
also useful for monitoring infrastructure, sidewalks, and drawing 
contour lines. Finally, the ground class can be employed to model 
the terrain class in the project area. That is why the Digital Terrain 
Model (DTM) is calculated, which will be used later to calculate 

the contour lines model. Concerning the above-ground class, it is 
used to determine the intact and damaged buildings. Regarding 
the building viewpoint, the damaged area has been identified. 
Each processing step of the presented flowchart will be explained 
independently in the next sections.

Point cloud classification into ground and above-
ground classes

We classify point clouds into two classes: ground and non-
ground. Separating point clouds into ground and non-ground is 
important for creating a DTM. For this purpose, the Progressive 
Triangular Density Filter (PTDF) algorithm [24] is applied. In-
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deed, it relies on detailed initial terrain and fine-tuning of infor-
mation; initial temporal DTMs of normal quality are obtained us-
ing the CS filter and PTD. This operation excels in accuracy as well 
as in practicality [24]. Moreover, an adaptive texture simulation 
filtering algorithm based on terrain roughness is applied to re-
move noisy points and then adjust the input data. Hence, the used 
algorithm can automatically classify the measured point cloud 
into ground and non-ground classes. At this stage, it is important 
to note that the terrain roughness should be adjusted [18]. A tex-
ture simulation filter (CSF) represents a tool for extracting ground 
points from 3D point clouds, where a DSM is directly generated 
from the point clouds [25]. In the same context, this procedure 
can be realized manually for the separation of the ground from 
the non-ground classes, but it is not preferable to use it due to the 
high calculation cost. On the other hand, this procedure can be 
realized to create ground truth data, which can help to estimate 
the classification accuracy (see Section 5). The point cloud in this 
paper was separated using the Cloudcompar software using the 
CSF Filter, which requires a small number of easy-to-set integers 
and logical parameters. The experimental results produce an av-
erage total error of 4.58% [26]. At this stage, it is noticed that the 
classification accuracy equals 97.4%, which is a good accuracy.

Calculation of DTM

A DTM is a digital model that provides topographic informa-
tion about the ground surface, and it can be generated from aerial 
photography, satellite images, ground surveys, LiDAR data, and 
multi-data fusion. The accuracy of the produced DTM is affected 
by (1) the resolution and density of the original point cloud, (2) 
the performance of the ground point classification algorithm, and 
(3) the used interpolation algorithm [27].

Three methods, including autocorrelation-based algorithms, 
are used to determine the DTM by selecting different window ori-
entations and contour lines for the sloped area, applying moving 
windows, and repeatedly extracting non-ground features. The re-
sults are validated by calculating skewness and kurtosis values. 
The results show that changing the window shape and orientation 
to long, narrow squares parallel to the ground contour lines, re-
spectively, improves the classification results in sloped areas. Four 
parameters, namely window size, window shape, window orien-
tation, and cell size, are experimentally selected to optimize the 
creation of the initial digital elevation model (DTM) [28‏].

In the same context, a deep learning-based method for ex-
tracting DTMs is applied using deep Convolutional Neural Net-
works (CNNs). For each point with a spatial context, neighboring 
points within the window are extracted and converted to an im-
age [29]. The point classification can then be treated as an image 
classification. The point-to-image transformation is carefully de-
signed by considering the elevation information in the neighbor-
hood. This enables the deep CNN model to learn how a human 
operator recognizes a point as a ground feature, thus enabling 
us to extract DTM [30]. The third DSM construction algorithm is 

tested, which accurately extracts ground data from measured 3D 
point clouds and generates a DTM. This algorithm uses flat surface 
features and contacts with the local minimum points to improve 
ground point extraction [31]. To conclude, the visual comparison 
between the results of the last three illustrated algorithms shows 
a high similarity level between the obtained results, which is why 
any method of the last three tested ones can be applied to calcu-
late the DTM. 

Calculation of contour lines

Starting with the DTM model, contour lines of the project area 
are calculated. For this purpose, two approaches have been tested 
to calculate contour lines, including adaptive segmentation, data 
point reduction, and curve fitting, where the point cloud is seg-
mented along the direction into multiple layers according to the Z 
coordinate values. The layers are then partitioned at the interme-
diate level to form two-dimensional points. These points are then 
used to generate a boundary curve. The advantage of this method 
is its simplicity and insensitivity to common small accuracy errors 
[32]. Also, a three-dimensional octree-based grid is applied to 
handle large amounts of unordered point clouds. This is achieved 
by iteratively segmenting cells using the normalized values of the 
points. This process extracts the edge neighbor points and then 
extracts the contour lines [33]. It is observed that the calculation 
cost is much better in the first approach, especially when the input 
data volume is considerable.

Road damage analysis

It is unavoidable to examine the roads in the area of the de-
stroyed buildings to determine the usability of the road, whether 
the road has been damaged or not. The road type must also be 
determined, as it is expected to envisage a list of road kinds in the 
disaster area, such as highways, major public roads, inter-building 
roads, roads under construction, and agricultural roads. The res-
toration of each type of road varies according to the engineering 
instructions. The location of road damage can be determined using 
any type of RS data, such as aerial photographs, satellite images, 
and airborne point clouds [34]. In this paper, roads are manually 
classified using three-dimensional airborne point clouds. Ground 
class can be classified into two subcategories: roads and natural 
ground, as shown in Figure 2, where the red arrow indicates the 
road, and the green arrow indicates the natural terrain. Regard-
ing the importance of roads for accessing the damaged area, the 
excavated roads are identified, their usability status is described, 
and the extent of the damage is determined. Roads are classified 
according to the level of damage into four categories: intact roads, 
partially destroyed roads with the possibility of restoration, par-
tially destroyed roads without the possibility of restoration, and 
fully destroyed roads (Figure 4). In Future work, more investiga-
tions will target the roads subclass regarding its particular im-
portance in the management of disaster areas. At this point, the 
extraction and analysis of road damage may be automated using 
machine learning and rule-based algorithms.
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Figure 4: (a) Intact roads, (b) Partially destroyed roads with the possibility of restoration, (c) Partially destroyed roads without the 
possibility of restoration, (d) Fully destroyed roads.

Once the roads subclass is segmented according to the dam-
age state, safety plans can be developed to be able to access the 
disaster area to construct and/or restore the road network, and 
then start the other target operations, such as restoration proj-
ects. In addition, the extent of damage to green spaces is assessed, 
with existing damage determined based on the extent of the de-
struction of forests and agricultural land and whether it can be 
restored due to irreparable damage, such as chemical and radio-
active materials. The presence of chemicals can cause significant 
damage to green areas, as well as fires and other causes. We ha-
ven’t focused on this topic much on this paper because it merits 
being handled in future work.

The ability to restore the damaged buildings depends on three 
criteria:

a.	 The value of the building: Whether the building is histor-
ic, governmental, or a building that is difficult to remove, such as a 
dam or an ordinary building.

b.	 Restoration cost: If the cost of restoration is greater than 
the cost of demolition and reconstruction, the decision will be to 
rebuild it. If the cost of restoration is less, the building will be re-
stored.

c.	 Restoration risk: If the restoration poses risks to work-
ers and others, we determine the extent of the risk and carry out 
the restoration.

After identifying the damaged buildings manually, the per-
centage of damaged buildings regarding the total number of all 
buildings should be calculated to estimate the damage volume in 
the target area. Also, it is unavoidable to determine the value of 
damaged buildings and the timeframe for restoring them, and the 
kinds of damage according to the proposed building damage clas-

sification scale. In this paper, we will focus only on the detection 
of damaged buildings and the determination of the percentage of 
damaged buildings, and the other investigation will be processed 
and detailed in future work. Concerning the green areas, such as 
parks and forests, that may have been exposed to damage (such as 
fires, drought, cutting, or theft), but these are not discussed in this 
paper. We will discuss them in subsequent papers. In this paper, 
the damaged buildings were identified manually, which is why 
the accuracy is supposed to be 100%. However, the identification 
should be automatic, and we will do this automatically in future 
work.

Results and Accuracy Discussion 

The input data is a 3D point cloud calculated from UVA imag-
es by considering a great overlap between them (Section 3). This 
point cloud covers an urban area that suffered from war damage. 
According to the suggested approach summarized in Figure 3, the 
first step of data processing is the classification of the 3D point 
cloud into two classes: ground and above-ground classes. Figure 
6 shows the 3D visualization of the obtained result of the classifi-
cation procedure. In Figure 6, it can be seen that the ground class 
represents the natural ground in addition to the roads, whereas 
the above ground class contains both intact and damaged build-
ings. Also, the trees in the aboveground class were eliminated 
because they are considered noise. This choice has been adopted 
regarding the research goal, which is the damage assessment in 
disaster areas. 

At this stage, it is important to assess the accuracy of the clas-
sification results. For this purpose, the confusion matrix is used 
[35,36]. In this context, only two classes will be considered: the 
ground class and the above-ground class. As manual classification 
(point per point) is supposed to have high accuracy [37], the ref-
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erence model is manually calculated. Three errors can depict the 
classification result accuracy (Table 2). Error, I represent the rate 
of misclassified building pixels; Error II describes the rate of mis-
classified non-building pixels, and Total Error, which expresses 
the rate of misclassified pixels. In Table 2, it can be noted that the 
achieved classification has considerable accuracy values, which 
confirm the validity of classification results. Once the ground class 
is extracted from the point cloud, the next step is to calculate the 

DTM and the contour lines of the scanned area. Figure 7 shows 
the visualization of the DTM of the project area. The colors in this 
figure were calculated as a function of Z coordinate values. As 
illustrated in Figure 7a, there are a lot of ground missing points 
inside the boundary of the project area. This phenomenon can be 
explained by the presence of areas covered by buildings. To over-
come this issue, the empty pixels inside the study area boundary 
can be calculated by interpolation as shown in Figure 7b.

Figure 5: (a) Intact roads, (b) Partially destroyed roads with the possibility of restoration, (c) Partially destroyed roads without the 
possibility of restoration, (d) Fully destroyed roads.

Figure 6: Visualization of classification results; (a) Ground class; (b) Non-ground class.

Table 2: Assessment of classification results. 

Error 1(%) Error 2 (%) Total Error (%)

2 1.5 2.6

In the same context, the contoured lines of the scanned area 
are calculated as mentioned in Figure 8, where the step is consid-
ered equal to 0.5 m. It can be noted that the missing ground point 
areas are interpolated to calculate the contour lines for the com-

plete scanned area. After classifying the point cloud into ground 
and above-ground areas, calculating the DTM model and contour 
lines, the road classification is extracted and classified into intact, 
partially damaged, or destroyed sections. In the studied area, there 
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are three roads: two intact roads, shown in red, and one partially 
damaged road, which contains some rubble and some vegetation 

that has grown due to the lack of road maintenance (Figure 9).

Figure 7: DTM of project area; (a) Empty pixels inside project boundary are kept empty; (b) Empty pixels inside project boundary 
are filled by interpolation.

Figure 8: Contour lines of the studied area.

Figure 9: Roads to the studied area.
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Concerning the above-ground class, the vegetation is consid-
ered noisy points, as mentioned in Paragraph 1 of this section, 
which is why this class will only contain buildings. Thereafter, we 
identify the damaged buildings from the point cloud: where the 
buildings have been categorized into intact buildings, partially de-
stroyed buildings that can be repaired, destroyed buildings that 
cannot be repaired, and rubble (there is no remaining building, 
but only hip of debris). The destroyed buildings were identified 
manually using aerial images and a 3D point cloud, and only two 

destroyed buildings were identified (marked in the red box) (Fig-
ures 10c & 11). Upon inspection, their classification was deter-
mined, and both buildings can be repaired (Rehor M et al. [12]). 
The first damaged building has suffered damage to its exterior 
and interior walls, as well as damage to the roof. The rest of the 
building is intact. This means we can restore the first damaged 
building by identifying the areas of damage and debris that need 
to be removed during the restoration and then proceed with the 
restoration.

Figure 10: Building classification: (a) Aerial photo of building boundaries; (b) Building Boundary Map; (c) Aerial photo of destroyed 
buildings.

Figure 11: (a) First damaged building; (b) Second damaged building.

The damage to the second building is identified from the point 
cloud and aerial images manually. The adjacent store was fully 
destroyed, with damage to the second-floor ceiling and parts of 
its walls. The rest of the building remains intact. By analyzing the 
point cloud, we conclude that this building can be restored, as we 
can identify the areas of damage and debris that need to be re-
moved during the restoration. It can be concluded that nine build-
ings are available in the study area (Figure 10), seven of which are 
in good condition and two of which are damaged. This results in 

a total building damage rate of 22.2%, a significant percentage in 
the targeted area. This percentage helps us determine the extent 
of damage in the city for restoration and reconstruction purposes 
and identify the most devastated areas.

Conclusion

For the most common terrain measurements, we adopted 
photogrammetry, which consists of images taken from a drone 
and analyzed using advanced software to produce a point cloud. 
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These point clouds are then classified as the DTM as well as the 
contour lines model. Moreover, the destroyed buildings and roads 
are extracted respectively from the above-ground and ground 
classes and classified according to the possibility of restoration. 
This approach was developed to serve three goals: first, the tar-
geted area is dangerous and could cause harm to people who in-
tend to go inside it; second, the speed of issuing results and rapid 
response; and third, the study area dimensions could be consider-
able. The automation of all processing steps will be at the head of 
our priority in future work. Then, testing the suggested algorithm 
on different datasets of different areas and different sensors, such 
as LiDAR data, is inevitable. Finally, integrating machine learning 
algorithms may help to improve quality and accuracy.
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