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Abstract

The modeling of spontaneous imbibitions of a liquid into porous wicks which are made from natural fibers has been investigated in the
current research. There has been numerous numbers of mathematical models to predict the wicking properties. The application of all the models
depends on some factors such as the microstructure of the wick, porosity, wicking liquid and etc. Lucas-Washburn equation is one of the initial
and old wicking models to predict the height of liquid front as a function of time. Darcy's law as an applicable model is based on the movement
of the liquid in the wick with a sharp front. However, the sharp-front model is unable to explain region of partial saturation. Richard's equation
covers this drawback and predicts the absorbed liquid-mass into the wick as function of time. In this research we overview the application of
theses famous theoretical models and their applicability





Introduction


Recently porous wicks has been confronted a surge in its
application in several important and useful industries and
commercial applications from a simple example, its application
in lightening torches [1] and air refreshers and scent dispensers,
to an advanced examples of using porous wicks in propellant
management devices (PMD) in rockets [2,3] and their usage
in heat exchanger and solar panels applications [4-9]. Hence,
modeling spontaneous imbibitions which is called the wicking
process is so important in term of predicting the height of liquid
front and other properties.
 




Discussion

During the wicking process of a fluid into a porous medium,
as the imbibitions under capillary pressure [10-12], depending
on many factors such as pore structure and the wicking fluid
properties, we may confront with different type of liquid-front
such as: Sharp front, Semi-Sharp front and diffusive front.
Depending on the type of the liquid front, there have been many
theoretical models to investigate this wicking phenomenon. The
oldest method, porous wicks are modeled as a bundle of parallel
capillary tubes which are aligned along the direction of the flow.
Initially it was investigated by Lucas-Washburn [13] and later
continued by other researchers who have added and completed
that equation based on other assumptions [14-24]. In Lucas
Washburn equation, they neglected the effect of the inertia and
gravity effects and used the momentum balance equation to
derive an analytical solution to predict the height of liquid front
as a function of time and they presented their equation as
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Where s and  are surface tension and viscosity of the
wicking fluid and Re defined as the effective capillary radius.
Based on the main assumption on which the Washburn equation
is based, it is incapable of modeling 2D or 3D flows as the flow
happens just in one direction. In addition, there are some fitting
parameters such as hydraulic radius needed to be provided for
the Washburn equation [25] and the actual microstructure of a
porous medium is not made from a bundle of capillary tubes.
These like mentioned drawbacks limit the application of the
Washburn equation. 


As a recent method to model wicking of liquids into porous
wicks is based on using Darcy's law [26-28]. He developed his
theoretical model based on his investigation on the relationship
between flow-rate and the pressure gradient through a hydraulic
resistance term. Darcy's model was built on the assumption that
a clearly-identifiable liquid front progress during the wicking
process and behind this sharp front all pores are filled by the
wicking liquid the hat part of the wick is considered as a wet
wick. There have been many efforts to develop the Darcy's law based models for predicting and modeling liquid absorption
in porous wicks [28-32]. In contrast with Washburn equation,
Darcy's law allows researchers to model and predict the two and
three -dimensional and, more importantly, it do not need any
fitting parameter for hydraulic radius or capillary diameter. 


As it was mentioned formerly, one of the liquid-front types
during the wicking process in porous wicks is diffusive front
which happens due to some in homogeneity in microstructure
of the wick. This type of front occurs specially when a wick is
made of natural fibers and there are some fiber clustering
which lead to a diffusive front. Darcy's law is unable to explain
this type of front and there is no sharp and clearly identifiable
front and we are dealing with partial saturation which is due to
fiber clustering. Richard [29] proposed his model for modeling
unsaturated flows in porous media. Richards' equation is a
highly non-linear elliptic equation that predicts the diffusive
saturation field throughout a porous medium as a function
of time. Richard's equation as a useful tool to predict partial
saturation has been solved numerically and analytically using
various numerical schemes such as the finite difference method,
the finite element method, and the boundary element method
for different cases of porous wicks [30-38].


Conclusion


Depending the type of liquid-front during the wicking
process in porous wicks, the wicking properties can be obtained
and modeled on using different type of mathematical models.
Darcy's law is most applicable and useful model for all wicking
process with a sharp front and it covers the drawback of the
Washburn equation. Although it is unable to do the predictions
for partial saturation case which happens due to in homogeneity.
In those cases of partial saturation, Richard's equation is able to
determine the saturation level at any point of the wick during
the wicking process.
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