Phytosomes: An Advanced Drug Delivery System for Herbal Drug

Deepak Singh*, Prashant Upadhyay and Sukriti Upadhyay

Department of Pharmacy, IFTM University Moradabad, Uttar Pradesh, India

Submission: August 23, 2018; Published: September 18, 2018

*Corresponding author: Deepak Singh, Department of Pharmacy, IFTM University Moradabad, Uttar Pradesh, India; Email Id: deepakpharma88@rediffmail.com

Abstract

Phytosomes are the lipid compatible molecular complex. Phytosomes technology applied to poorly absorbable phytoconstituents. The bioavailability of phytoconstituents can be improved by the use of drug delivery system which have the capacity to cross the biological membrane. Phytosomes have better pharmacokinetic profile than conventional herbal extracts.

Keywords: Phytosome; Phytoconstituents; Herbal drug delivery

Phytosomes is a complex of phospholipids and natural active ingredients. Phytosome increases absorption of herbal extract when applied topically or taken orally [1]. Phytosomes or herbosomes are lipid compatible phospholipid complex, contains herbal extract bounded with phospholipids [2]. It is a vesicular drug delivery system containing phytoconstituents surrounds by lipid. Phytosome increases absorption of phytoconstituents through GIT hence improves bioavailability of phytoconstituents [3].

Advantages

i. Better stability of phytoconstituents

ii. Improve bioavailability of phytoconstituents

iii. They can also improve permeation of drug through skin [3]

iv. It improves absorption of lipid insoluble phytoconstituents orally as well as topically.

Preparation of Phytosomes

Phytosomes can be prepared by reacting phosphatidylcholine and phytoconstituents in 1:1 ration in an aprotic solvent. In phyto-phospholipid complex the ration between phospholipid phytoconstituent is in the range 0.5-2 mole. The most preferable ration between phospholipid and phytoconstituents is 1:1. The phospholipid are mostly selected from group consisting soya-lecithin phosphatidylcholine, phosphatidylerine and phosphatidylethanolamine. Spectroscopic study shows that the molecules of phospholipid are bonded with phytoconstituents by means of chemical bonds.

Characterization of Pharmacosomes

To study interaction between the drugs and the pho, following spectroscopic methods are used.

FTIR (Fourier Transform Infrared Spectroscopy)

FTIR spectroscopy is also a useful tool for the evaluation of stability of the pharmacosome. The formation of the complex...
can also be confirmed by the IR spectroscopy comparing the spectrum of the complex with the spectrum of the individual components and their mechanical mixtures [5].

Physicochemical Evaluation of phytosomes [4]

i. Solubility: Solubility study can be performed by taking an excess of drug in different solvents like water, phosphate buffer (PH 6.8) acetate buffer (PH 4.5).

ii. Particle Size Distribution: To study particle size distribution dispersion of prepared phytosomes can be made in alcoholic solution (isopropyl alcohol) and analyzed under size analyzer.

iii. Stability of Pharmacosomes: Stability of the complex can be studied by correlating the spectrum of complex at various points of time in the solid state with spectrum of a dispersion in water consisting of small particles.

iv. Dissolution Studies: In vitro dissolution studies are done in media of different PH using standard dissolution apparatus available for the purpose. The results are assessed on the basis of apprehended activity of the active constituents the rapetically [2,6].

Scanning Electron Microscopy/Transmission Electron Microscopy.

For studying the surface order of pharmacosomes these techniques can be utilized [2]. The shape and size of pharmacosomes may be affected by purity grade of phospholipid and the process variables such as speed of rotation, vacuum applied, or the method used. Pharmacosomes prepared by low purity grade lipids yields greasy product. Pharmacosomes prepared by high purity grades lipids are prone to oxidative degradation [6-9].

Conclusion

Vesicular systems such as (Pharmacosomes, liposomes, niosomes) are the emerging carrier systems in the pharmaceutical industry. They have advantages in targeting drug to a specific site in body. Pharmacosomes have advantage in improving bioavailability of herbal constituents as well as target herbal active constituents to specific site.

References

