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Abstract

One of the most important intracellular signalling molecules, cyclic adenosine monophosphate (cAMP), acts as a second messenger in the 
activation of gonadotrophins. In the meiotic cell cycle, the function of the cAMP analogue dibutyryl cAMP (db-cAMP) is not well understood 
beyond the metaphase-I (M-I) stage. In this section of the investigation, we test whether db-cAMP may induce a transient arrest of meiosis at 
the M-I stage. In cultured rat oocytes, we modify kinases, signal molecules, and cell cycle regulators. We harvested M-I-arrested cumulus oocyte 
complexes (COCs) from rats’ ovaries after superovulation. These oocytes were grown in fresh complete medium with db-cAMP at 0.125, 0.25, 
0.5, and 1mM. Oocytes were treated with db-cAMP, and their morphology, meiotic phases, phosphorylation of cyclin-dependent kinase 1 (Cdk1) 
and cyclinB1, levels of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), intracellular reactive oxygen species 
(ROS), Calcium Ca2+,  mitochondrial membrane potential, and apoptotic status were all examined. In our in vitro investigation, 1 mM db-cAMP 
dramatically lowered Thr-14/Tyr-15 pCdk1, causing meiotic arrest in the M-I stage with competent oocytes for up to 12 hours. when db-cAMP 
treatment, intra-oocyte cyclic nucleotides increased, causing meiotic arrest. Control oocytes resumed meiosis when ROS and Ca2+ increased. Due 
of damaged mitochondria, long-term db-cAMP treatment causes apoptosis in oocytes. We also study db-cAMP concentrations and periods that 
decrease spontaneous meiosis resumption after M-I arrest. This study introduces an in vitro approach for meiotic arrest with equally dispersed 
mitochondria during M-I stage. This may increase oocyte competency in ART practices.
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Introduction

Among the many exciting aspects and qualities that make the 
rat an interesting model for investigating meiotic cell cycle control 
is the fact that, in in vitro culture environments, the oocyte does 
not go beyond the metaphase-I stage (M-I) [1,2]. In mammals, the 
voyage from metaphase-I (M-I) to metaphase-II (M-II) is crucial 
because the egg extrudes the first polar body (PB-I) and becomes 
haploid gamete. PB-I extrusion and meiotic cell cycle progression 
from M-I to M-II are poorly understood. Therefore, it is critical 
for both fundamental research and ART to understand how 
mammalian oocytes undergo meiotic maturation. Meiotic arrest 
and resumption occur in oocytes via a series of chemical cascades 
that are regulated by a variety of signalling molecules produced by 
follicular cells [3,4]. The gonadotropins produced by the pituitary  

 
gland also play an important role in the cascade of events that ends 
in meiotic resumption. Several protein kinases (enzymes) play a 
crucial role in keeping mammalian oocytes in a state of meiotic 
arrest. Key protein kinases include protein kinase A (PKA), protein 
kinase B (PKB), protein kinase C (PKC), and mitogen-activated 
protein kinase (MAPK) in sustaining meiotic cell cycle progression 
in mammalian oocytes [5].

To communicate with oocytes, adenylate cyclase uses 
gonadotrophins to produce the second messenger 3’,5’-cyclic 
adenosine monophosphate (cAMP) [6-8]. Rat granulosa cells 
and oocytes contain a differentiation factor termed cAMP, which 
governs the progression of the meiotic cell cycle by maintaining 
the meiotic arrest [3,9,10]. During the diplotene and M-I phases, 
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meiosis is arrested, but when cAMP and 3′,5′-cyclic guanosine 
monophosphate (cGMP) concentrations drop, meiosis resumes 
[11]. Reactive oxygen species (ROS) generation is linked to 
decreased levels of cyclic adenosine monophosphate (cAMP) and 
cyclic guanosine monophosphate (cGMP) following spontaneous 
meiotic restart after meiotic arrest in oocytes cultured in vitro 
[12]. It’s well knowledge that reactive oxygen species (ROS) 
function as signalling molecules in many different types of cells, 
including mammalian germ cells. Mild increases in ROS aid in the 
progression of the meiotic cell cycle during in vitro culture [13].

An increase in cAMP levels activates cAMP-dependent protein 
kinase A, which in turn activates the maturation-promoting factor 
(MPF) [6]. Oocytes are unable to enter the M-I arrest phase of 
meiosis due to this. MPF regulates oocyte meiosis in all mammals 
[14,15]. CDK1, a component of the MPF, is essential for meiotic 
resumption [16]. Meiotic resumption in M-I arrested oocytes 
occurs when the MPF complex is functional. Stabilisation of MPF 
requires cyclin B1 contact with Cdk1, phosphorylation at the 
Thr161 residue, and dephosphorylation at the Thr-14/Tyr-15 of 
Cdk1 [17]. Dephosphorylation of Thr161 and phosphorylation 
of Cdk1’s Thr-14/Tyr-15 residues turn MPF unstable, and its 
breakdown through ubiquitin-mediated proteolysis triggers 
exit from metaphase-I (EM-I) [18,19].

Meiotic competence allows an egg to develop into a viable 
organism, thus it’s crucial. Meiotically competent oocytes have 
the potential to improve ART success rates in most mammalian 
species [20]. Oocytes may restart meiosis on their own [21] if they 
are separated from their follicular environment. Findings suggest 
that FSH improves oocyte development via a cAMP-mediated 
pathway while initially delaying nuclear maturation [22-24]. 
Dibutyryl cAMP sodium salt (db-cAMP), a membrane-permeable 
cAMP analogue, and 3-isobutyl-1-methylxanthine (IBMX), a 
type 3 phosphodiesterase inhibitor, have both been used in in 
vitro maturation (IVM) to increase cAMP levels, delay meiosis, 
and subsequently regulate nuclear and cytoplasmic oocyte 
development [6, 25, 26].

We hypothesise that in vitro cultured oocytes would be less 
capable of maturing if their cAMP levels were suddenly lowered. 
Oocyte morphology, mitochondrial membrane potential, and early 
apoptosis were also analysed as a function of db-cAMP delivery 
during in vitro growth. Oocytes in the M-I stage were essentially 
stopped at the arbitrary exit for up to 12 hours, while still being 
alive and having equally dispersed mitochondria. There is a 
lack of information on the method and mechanism of action in 
M-I rat oocytes. This study examined the impact of db-cAMP on 
spontaneous meiotic restart from the M-I stage in rat oocytes 
during in vitro culture at different time hours to better understand 
the mechanism behind db-cAMP treatment on oocyte maturation 
at different culture durations.

Materials and Methods

Chemicals and culture media

We purchased antibiotics and culture media from HiMedia. 
With the exception of the compounds specifically named, all 
others were acquired from the Sigma Chemical Co. located in St. 
Louis, Missouri. The pH of the M-199 culture media was adjusted 
to 7.2 ± 0.05 by putting in sodium bicarbonate (0.035% w/v) per 
the manual instructions. After that, we added glutamate, penicillin, 
and streptomycin  (Cat. no. A007, HiMedia) to the culture mix to 
inhibit further microbial growth.

Dibutyryl Cyclic AMP (db-cAMP) working concentration 
preparation

Dimethyl sulfoxide (DMSO, 0.1%) was used to dissolve 
the sodium salt of db-cAMP in order to generate a 1 mM stock 
solution. The stock solution was diluted using the media to attain 
the working concentrations (0, 0.125, 0.25, 0.5, and 1 mM) for in 
vitro investigations. The working concentrations were prepared 
for 5 minutes at 37°C before use.

Animals, oocytes Collection and Culture

Charles-Foster strain female rats of sexually immature age (22-
24 days old; 45 ± 5 g body weight) were housed and maintained 
with ad libitum access to food and water per conventional 
husbandry practises. Subcutaneous injections of 20 IU of pregnant 
mare’s serum gonadotropin (PMSG) were given to rats for 48 
hours, and then 20 IU of human chorionic gonadotrophin (hCG) 
were given to them 10 hours later (Superovulation protocol). 
The ovaries were removed from the rats that were killed through 
cervical dislocation and placed in petri plates with preheated 
media.

Under a stereomicroscope (SMZ800N, Nikon, Tokyo, Japan), 
the ovary was perforated with a 26-gauge needle connected to a 
1 mL tuberculin syringe, and the ovary and fallopian tube were 
removed and deposited in the pre-warmed M-199 medium 
in a 35 mm Petri dish. Oocytes in the M-I arrest state were 
characterised morphologically due to the absence of GV and 
nucleus in the cytoplasm. Microtubing was linked to disposable 
glass micropipettes, which were used to collect the M-I arrested 
oocytes. After a brief incubation at 37°C, they were transferred to 
fresh culture medium containing 0.01% hyaluronidase. Oocytes 
that had been M-I arrested were used for in vitro tests after being 
washed three times.

Evaluation of oocyte meiotic status 

With the use of Hoechst-33342 staining, we were able to assess 
an oocyte’s meiotic state, as verified by its chromosomal status. 
After two washes in phosphate-buffered saline (PBS), 6-8 oocytes 
were incubated with 10 μg/ml Hoechst 33342 for 5 minutes at 37 
°C. For chromosomal analysis, we used a fluorescence microscope 
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(Eclipse Ni, Nikon, Tokyo, Japan) set to 350 nm, and for oocyte 
morphology, we used a phase contrast microscope (Eclipse 
E200, Nikon, Tokyo, Japan). Meiotic stage was verified by three 
independent tests.

The effect of db-cAMP on spontaneous meiotic 
resumption from M-I arrested oocytes 

A group of (10-14) oocytes were placed in petri dishes with 
various concentrations of db-cAMP (0, 0.125, 0.25, 0.5, and 1 mM), 
with DMSO serving as the control. The petri dishes followed by 
placing in a CO2 incubator (Galaxy 170R, Eppendorf, Hamburg, 
Germany) set at 37 °C and were placed for incubation for up 
to 12-24 hours. After incubation for varying amounts of time, 
morphological changes in the oocytes were analysed with a phase 
contrast microscope. At least three sets of experiments were 
performed to ensure the accuracy of the results.

Immunocytochemistry for cAMP analysis

The concentration of cAMP was evaluated by employing a 
monoclonal antibody. For this objective, oocytes (n=5-6) from 
the control and db-cAMP treatment groups are fixed with 4% 
buffered paraformaldehyde and then air-dried. Following a three-
step PBS washing procedure, slides were treated with 100 µl of 
Triton X-100 (0.01% in PBS) at room temperature for 5 minutes. 
After being washed twice or thrice with PBS, the slides were 
then treated with sodium citrate solution (0.01 M) at 37°C for 10 
mints. After a second PBS wash, the slides were incubated with a 
blocking buffer (2.5% PBS-BSA solution) at 37°C for 30 minutes. 
Next, slides were treated with 100 µl of diluted (1:500 dilution in 
blocking solution) primary antibody (cAMP, mouse monoclonal, 
sc-73761) after a PBS wash. The intensity of fluorescence was 
measured at 465 nm using a fluorescence microscope. Oocytes 
were subjected to corrected total cell fluorescence (CTCF) analysis 
to verify the findings, and at least three independent sets of tests 
were conducted. Simply said, cell-to-background integrated 
fluorescence (CTCF) is the cell’s total fluorescence. 

Evaluation of MPF evel

Our method for analysing the phosphorylation of Cdk1 and 
cyclin B1 levels in db-cAMP-treated oocytes was described in 
[17], and it included the use of extremely specific antibodies 
from Santa Cruz Biotechnology (Dallas, TX, USA). Thr-14/Tyr-
15 p-Cdc2p34 rabbit polyclonal antibody (sc-12340) and Thr-
161 p-Cdc2p34 rabbit polyclonal antibody (sc-12341) were both 
generated against sequences containing Thr-14 and Tyr-15, 
respectively. p-34Cdc2p34 (PSTAIRE) rabbit polyclonal antibody 
(sc-53) was generated against the conserved PSTAIRE domain of 
Cdc2. Following incubation, slides were rinsed thrice with PBS, 
and then subjected to 100μl of specific anti-rabbit fluorescein 
isothiocyanate (FITC)-labelled (sc-3839) secondary antibody for 
detecting Thr-14/Tyr-15, Thr-161, as well as total phosphorylated 
Cdk1 and cyclin B1 levels, and anti-mouse TRITC-labelled (sc-

3796) secondary antibody for detection of β-actin at 37°C for 1 
hour (1:1000 dilutions in blocking buffer). After incubating the 
slides for an hr, the fluorescence intensity was evaluated using 
a fluorescent microscope at 465 nm (FITC) and 540 nm (TRITC) 
wavelengths, respectively. The slides were washed three times 
in PBS. To correlate the data, we show you example photos from 
each of the three independent runs of the experiment, where 4-5 
denuded oocytes were subjected to CTCF analysis using Image 
J software (version 1.44 from National Institutes of Health, 
Bethesda, USA).

Quantitative assessment of cAMP and cGMP Levels

Total arrest in the M-I stage was seen in the treatment group 
for as long as 12 hours, but in the control group, cyclic nucleotide 
levels were only measured in the control and 1 mM db-cAMP-
treated groups. Eight to ten oocytes were taken from each group 
and deposited in lysis buffer (20 mM Tris-HCL, 150 mM NaCl, 
1 mM EDTA, 1 mM EGTA, and 1% Triton-X 100; pH = 7.2) for 
quantitative analysis. All the samples, standards, and reagents 
were prepared following the procedures outlined in the relevant 
business handbook. The results section displays the cAMP and 
cGMP concentrations in terms of pmol/mg protein. R&D Systems 
Inc. ELISA kit for cAMP and cGMP analysis (Cat. No. KGE002B for 
cAMP and KGE003 for cGMP, respectively) from the United States

Measurement of total ROS level 

Following our previously published technique [17, 27], the 
total ROS level was assessed using 2’, 7’-dichlorodihydrofluorescein 
diacetate (H2DCFDA). For this, 15 min at 37oC in a CO2 incubator 
were spent exposing 10-12 oocytes from each control and treated 
group (12 and 24 hours) of 1 mM db-cAMP to H2DCFDA (10 µM). 
Oocytes were rinsed thrice with PBS before being subjected to a 
fluorescence microscope analysis of DCF fluorescence at 485 nm 
excitation and 520 nm emissions. Three independent experiments 
were performed in order to verify the findings, and CTCF analysis 
was carried out using ImageJ software (version 1.44; National 
Institutes of Health, Bethesda, USA).

Fluo-3 AM-Based Intracellular Ca2+ Analysis.

Following a methodology that had already been described 
[20], the intracellular Ca2+ level was examined in the control 
and treatment groups. In a nutshell, culture media containing 
50 µM Fluo-3 AM were exposed to 10-12 oocytes from the 
control and 1 mM db–cAMP treated groups for 12 and 24 hours, 
respectively, at 37 °C in a CO2 incubator. Oocytes were then taken 
out and thoroughly cleaned with PBS three times before Fluo-3 
fluorescence was measured at 488 nm excitation and 520 nm 
emission under a fluorescent microscope (Nikon, Eclipse; E-80i, 
Japan). Using the Image J Software (version 1.44 from the National 
Institutes of Health, Bethesda, USA), the CTCF of oocytes from 
three different experiments were determined.
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Monitoring of mitochondrial membrane potential (ΔΨ) 
of db-cAMP treated oocytes

The viability of the cell was further evaluated for up to 24 
hours with 1 mM of db-cAMP among all the doses. Oocytes were 
stained with JC-1, a reporter dye for the inner mitochondrial 
membrane potential, as directed by the manufacturer. In brief, 
treated oocytes were incubated with JC-1 for 20 minutes after 
being produced to a final concentration of 1 M in dilution buffer. 
An inverted fluorescence microscope (EVOS FL, Life Technologies) 
was used to observe the stained oocytes. By measuring the total 
fluorescence of the whole oocyte, fluorescence analysis was 
conducted. The CTCF approach was used to normalise the mean 
value for each fluorescence to the measuring area [28]. Individual 
oocyte values from three treatments were expressed as total red 
CTCF [29].

 Staining With Acridine Orange and Propidium Iodide 
to Identify Apoptotic Cells.

Acridine orange (AO) and propidium iodide (PI) staining 
confirmed apoptotic profiles as a consequence of morphological 
alterations in the db-cAMP-treated oocytes at different time points. 
Briefly, oocytes from each group that had been treated with db-
cAMP were washed in PBS and then stained for 10 minutes with 
an AO/PI mix (1 µg/ml in PBS). Fluorescence was observed using 
an inverted fluorescence microscope (EVOS FL, Life Technologies) 
in three separate investigations [28].

Statistical analysis 

The data were collected from three separate studies, and 
the results were reported as the mean ± standard error of mean 
(S.E.M) Before doing statistical analysis, all percentage data were 
transformed using the arcsine square root. The chi-square (χ2) 
testing was used to compare the rates of meiotic resumption 
between the control and db-cAMP-treated groups (Table 1). SPSS 
software, version 17.0 (SPSS, Inc., Chicago, IL, U.S.A.), was used to 
perform a one-way ANOVA (P 0.05), followed by the Bonferroni 
test on a subset of the data, and the student’s t-test on the 
remaining data. A substantial change from the control group or 
the treatment group is indicated by a “*” or “***,” respectively. P < 
0.05 and P < 0.001were used as criteria for statistical significance.

Results 

Oocytes undergo morphological changes during in vitro 
maturation

As shown in (Figure 1), oocytes collected after treatment 
with 20 IU PMSG and 20 IU hCG exhibited M-I arrest, as shown 
by the lack of GV (blue arrow; Figure 1A). Oocytes in the control 
group revealed the disappearance of GV and the existence of PB-I 
to demonstrate M-II arrest (yellow arrow; Figure 1B) after 5-6 
hours of in vitro culture. Hoechst-33342 staining further validated 
their meiotic status, which included phases such as M-I arrest (db-
cAMP treated group) (Figure 1, A1) and M-II arrest (Figure1, B1).

Figure 1: Representative photos of db-cAMP-treated rat oocytes’ morphological alterations and meiotic phases during in vitro culture. (A). 
Oocytes at metaphase-I arrest, showing absence of germinal vesicle (GV) by blue arrow (B). Oocytes at metaphase-II arrest showing first 
polar body (PB-I) by yellow arrow. The formation of metaphase plate chromosomes (green arrow, A1) shows M-I arrested oocyte, while M-II 
arrested oocyte is confirmed by the presence of haploid set of chromosomes in oocyte cytoplasm (white arrow, B1) and another set in PB-I 
(red arrow, B1). Bar = 30 μm (upper panel photographs); Bar = 20 μm (lower panel photographs).
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During in vitro Culture, db-cAMP inhibited spontaneous 
meiotic resumption in a concentration-dependent 
manner

As shown in (Figure 2), The germinal vesicle (red arrow, 
Figure 2A) is absent in M-I oocytes. Oocytes in the control 
group spontaneously exited M-I arrest and had PB-I (76.32 ± 
5.802%; blue arrow; Figure 2B) after 12 hours of in vitro culture. 
Maximum inhibition of meiotic resumption was noticed in 1 mM 
concentration of db-cAMP (1 mM) up to 12 hours, with proper 
oocyte morphology observed till 18 hours (5.31 ± 0.82%), and 

demonstrating oocytes at complete M-I arrest evidenced by the 
absence of germinal vesicle (black arrow; Figure 2F), whereas in 
0.5 mM, 0.25 mM, and 0.125mM concentration of db-cAMP shows 
spontaneous meiotic resumption from M-I arrest evidenced 
by exit from M-I arrest (EM-I) (green arrow; Figure 2E) and 
presence of PB-I (yellow arrow; Figure 2D and 2C). The addition 
of db-cAMP during in vitro culture of M-I arrested oocytes at 12 
hours significantly reduced spontaneous meiotic restart (One 
way ANOVA, F = 51.278, p < 0.001; Figure 2G) in a concentration-
dependent manner. 

Figure 2: Representative photos of the effects of varying db-cAMP concentrations on oocytes grown for different intervals of time. Oocytes 
collected at M-I stage as control and possesses no germinal vesicle (red arrow; Figure 2A) (upper panel). After 12 hours of in vitro culture, 
control group showing M-II arrested oocytes and possesses PB-I (blue arrow; Figure 2B) (upper panel). Treatment of db-cAMP (1 mM) for 
12 hours inhibited complete resumption showing oocytes at M-I arrest showing absence of germinal vesicle (black arrow; Figure 2F) (lower 
panel) whereas in 0.5 mM, 0.250 mM and in 0.125 mM concentration of db-cAMP shows spontaneous meiotic resumption from M-I arrest 
evidenced by exit from M-I arrest (EM-I) (green arrow; Figure 2E) and presence of PB-I (yellow arrow; Figure 2D and 2C) (lower panel). 
(G) The presence of db-cAMP inhibited spontaneous meiotic resumption in a concentration-dependent manner. Data are mean ± S.E.M 
of three independent experiments and analyzed by one-way ANOVA). Bar = 80 μm (upper panel photographs); Bar = 50 μm (lower panel 
photographs).

The results represent the mean standard error of the mean 
across three investigations and were analysed using a one-way 
ANOVA. Bar = 80 m (images in top panel); Bar = 50 m (pictures 
in bottom panel). Oocyte resumption after in vitro culture was 
77.11% in the control group and 7.69% in the db-cAMP (1 mM) 
treated group. In contrast, the 1 mM db-cAMP treated group 
showed statistical significance when compared to the control 
group using the χ2 test (χ2 calculated 4.33 > χ2 critical 3.84; p < 
0.05). Therefore, there is a notable difference between the 1 mM 
of db-cAMP and the control.

Camp immunofluorescence intensity increased in db-
cAMP-treated oocytes

As shown in (Figure 3), Compared to the control (Figure 3A) 
and another db-cAMP treated group in which cAMP expression 
decreased as the concentration of db-cAMP decreased (Figure 3C-

E), and where meiotic resumption was also observed, the 1 mM 
db-cAMP treated group showed a significant (p < 0.05) increase 
in cAMP expression (one-way ANOVA, F = 32.15; p < 0.05). The 
images from the light microscope (Figure 3a-e) in the top panel 
are shown in the bottom panel. Figure 3F shows that the CTCF 
analysis confirms these results in more depth.

In The db-cAMP-treated Group, MPF Stabilisation Leads 
to Meiotic Arrest

Oocytes treated with 0.5 mM db-cAMP exhibited a considerable 
rise (p<0.001) in the immunofluorescence intensity of Thr-14/
Tyr-15 phosphorylated Cdk1 level, but oocytes treated with 1 mM 
db-cAMP remained entirely in M-I arrest until 12 hours of in vitro 
growth (Figure 4A1; A2). Oocytes treated with 1 mM of db-cAMP 
for 5 hours show a decrease in Thr-14/Tyr-15 phosphorylated 
Cdk1 level, while oocytes treated with different concentrations 
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of db-cAMP for 12 hours maintained MPF stabilisation, resulting 
in meiotic arrest at the M-I stage (Figure 4 C1-C3). Oocytes 
treated with varying amounts of db-cAMP for 12 hours showed 
no difference in the total phosphorylated level (PSTAIRE) of Cdk1 
(Figure 4 E1-E3). Meiotic arrest during the M-I stage is caused by 
an increase in cyclin B1 levels, as shown by the dramatic rise in 

cyclin B1 levels in oocytes treated with 1 mM db-cAMP (Figure 
4G1) compared to 0.25 mM db-cAMP treated oocytes (Figure 
4G3). Meiotic arrest at the M-I stage is induced by 1 mM db-cAMP 
in oocytes, and competent oocytes remain in arrest for up to 12 
hours of in vitro culture, as shown by CTCF analysis (Figures. 4B, 
4D, 4F, and 4H).

Figure 3: Photographs of db-cAMP-treated oocytes incubated for 12 hours in vitro demonstrating cAMP expression variations. Compared 
to control (A) and other db-cAMP-treated groups (C, D, and E), 1 mM db-cAMP-treated oocytes were completely arrested in M-I stage (B) 
and showed meiotic resumption (C, D, and E). The bottom panel displays light microscope photos (a-e) of the above panel (A-E). CTCF 
analysis reveals that cAMP expression decreased concentration-dependently throughout in vitro growth (F). Data are mean ± S.E.M. of 
three separate experiments analysed by one-way ANOVA and Bonferroni post-hoc analysis, *p<0.05, substantially elevated (1 mM db-
cAMP treated group over control). Bar = 20 µm.

Meiotic Arrest Occurs When Intraoocyte Cyclic 
Nucleotides Rise

As shown in (Figure 5), oocytes arrested at the M-I stage and 
treated with 1 mM of db-cAMP show a significant (p < 0.05) of 
cAMP (4.23 ± 0.57 pmol /oocyte) and cGMP (3.485 ± 0.15 pmol 
/oocyte) levels when in contrast to the control group of cAMP 
(2.28 ± 0.17 pmol/oocyte; Figure 5) and cGMP (2.67 ± 0.52 pmol/
oocyte; Figure 5). When M-I arrested oocytes were treated with 1 
mM db-cAMP for 12 hours in vitro, no spontaneous meiotic restart 
was seen in comparison to the control group (Figure 5). Three 
independent analyses confirmed these results.

Variations in the levels of total ROS 

A comparison of the total ROS level in control, 12-hours, and 
24-hours groups of oocytes that were treated with db-cAMP is 
shown in (Figure 6). This comparison was carried out using the 
fluorescent dye H2DCFDA. When compared to the control group, 
the ROS level in the oocytes that had been treated with 1 mM db-
cAMP showed a substantial (p < 0.05) drop when examined by 
the Figure 6A2 diagram. The CTCF analysis conducted on these 

oocytes using the ImageJ programme has provided support for 
our previous results (Figure 6B). Apoptosis may be triggered by 
high quantities of reactive oxygen species (Figure 6A3). However, 
minor increases in ROS may operate as a signal molecule for the 
control group’s meiotic restart (Figure 6A1) in the experiment.

A Change in Intracellular Ca2+ Level

Oocytes treated with 1 mM db-cAMP and grown for up to 12 
hours stayed in the M-I arrested stage (Fig. 7A2), as contrasted to 
the control group (Figure 7A1; M-II stage), as indicated in (Figure 
7). This was statistically significant (p < 0.05). After 24 hours of 
treatment with 1mM db-cAMP, a significantly higher amount of 
free intracellular Ca2+ was detected inside the deformed cytoplasm 
condition (1.92 times, Figure. 7A3) as compared to the control 
group. Our results are supported by the CTCF analysis of three 
separate trials performed in Image J (Version 1.3) (Figure 7B).

Long-Term db-cAMP Exposure Decreased Oocyte 
Mitochondrial Activity

Red fluorescence is expressed more strongly by active 
mitochondria due to the increased accumulation of JC-1 dye in 
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mitochondria, whereas green fluorescence is expressed by less 
active mitochondria [30]. Figure 8A shows that compared to db-
cAMP (1 mM) treated oocytes cultured for 24 hours, db-cAMP 
(1 mM) treated oocytes treated for up to 12 hours dramatically 
enhanced mitochondrial activity. However, compared to a 

12-hours culture of 1 mM db-cAMP and the control group, a 
prolonged culture in 1 mM db-cAMP treated oocytes drastically 
decreased mitochondrial activity (ΔΨ), as seen by a low red/green 
fluorescence ratio (lower panel).

Figure 4: Representative photographs showing the immunofluorescence intensity of total as well as specific phosphorylation status of Cdk1 
and cyclin B1 level in oocytes treated with different concentration of db-cAMP (mM) for 12 hours of in vitro culture condition. Oocytes treated 
with 0.5 mM of db-cAMP showed a significant increase (p < 0.001) in immunofluorescence intensity of Thr-14/Tyr-15 phosphorylated Cdk1. 
In oocytes treated with 0.250 mM of db-cAMP, meiotic resumption (47.53 ± 2.182%) was observed from M-I arrest in rat oocytes collected 
after super ovulation induction (Figure 4A3). Oocytes that experienced meiotic restart after M-I arrest were treated with 0.250 mM of db-
cAMP (Figure 4C3), which decreased Thr-161 phosphorylated Cdk1 by p<0.001. Cdk1’s total phosphorylated level (PSTAIRE) did not alter 
in oocytes treated with varied db-cAMP concentrations (Figure 4E1-E3). However, a significant increase in cyclin B1 level was observed in 
1 mM db-cAMP-treated oocytes (Figure 4G1), resulting in meiotic arrest in M-I stage (47.53 ± 2.182%) (Figure 4G3). During in vitro culture, 
db-cAMP (mM) did not affect β-actin expression in oocytes (Figure 4 I1-I3). These findings were supported by Image J’s CTCF analysis 
(Figure 4B, 4D, 4F, 4H, and 4J). Student’s t-test, “*” p < 0.001, was used to analyse three separate experiments’ mean ± S.E.M. Bar = 20 
µm. 

Acridine Orange/Propidium Iodide Staining Detects 
Apoptosis in db-cAMP-Treated Oocytes

Oocytes treated with 1 mM db-cAMP and grown for 24 hours 
as opposed to 12 hours in the 1 mM treatment and control groups 
showed signs of apoptosis. We carried out AO/PI staining to 
confirm apoptosis due to morphological alterations in respected 
group. Results showed that the 24 hours culture group of db-
cAMP treatment enhanced apoptosis in oocytes as shown by an 
increase in the intensity of red fluorescence for PI in comparison 
to control and 12 hours group oocytes (Figure 9; bottom panel). 
As shown in (Figure 9), the oocytes exposed to 1 mM db-cAMP 
for 12 hours showed AO green rather than PI red. However, 
this suggests proper oocyte morphology and integrity for 12-18 
hours. According to our research, a 1 mM db-cAMP treatment can 

prolong the M-I arrest for 12 to 18 hours while maintaining proper 
oocyte shape, compared to a 24-hours culture, which revealed 
oocytes with deformed morphology and membrane blebbing [31]. 
This extended db-cAMP (1 mM) culture of oocytes made them 
unfit for fertilization and IVF.

Discussion

Crosstalk between several signal molecules is crucial in 
modifying mammalian oocyte physiology [32]. These signal 
molecules are produced by the granulosa cells surrounding the 
oocyte or by the oocyte itself [33,34]. Changes in these signal 
molecule levels may determine whether an oocyte experiences 
meiotic arrest or resumption as the meiotic cell cycle progresses 
[14, 35]. Major signal molecules needed for the meiotic cell cycle 
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progression in mammalian oocytes include cAMP, cGMP, ROS, 
and Ca2+ [36]. In oocytes, the meiotic cell cycle may be affected 

by alterations in the signal molecules that regulate the MPF 
stabilization and destabilization and Cdk1 activity [32, 37].

Figure 5: Effect of db-cAMP on the cyclic nucleotides present in intraoocyte during the M-I arrested stage in comparison to the control. A 
significant increase of cAMP as well as cGMP levels were observed in M-I arrested oocytes treated with 1 mM of db-cAMP that remains 
at complete arrest at M-I stage after 12 hours in vitro culture as compared to oocytes in control group. Data are mean ± S.E.M of three 
independent experiments and analysed by Student’s t-test, * Significant (p < 0.05) difference as compared to oocytes in control group.

Figure 6: Fluorescence intensity of ROS in control, db-cAMP-treated oocytes at 12 and 24 hours. A significant (P < 0.05) decrease of total 
ROS level was observed in the db-cAMP (1 mM) treated oocytes as compared to control (Figure 6A2). The CTCF analysis of these oocytes 
using ImageJ software further confirms our findings (Figure 6B). High level of ROS can lead to apoptosis (Figure 6A3), whereas moderate 
increase in ROS level can act as a signal molecule in meiotic resumption in control group (Figure 6A1). Values are expressed as mean ± 
S.E.M of three independent experiments and data were analysed by the student’s t-test. *p < 0.05. Bar=80 μm.
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Figure7: Representative photograph showing fluorescence intensity of Fluo-3 in control and db-cAMP (1 mM) treated group. Meiotic arrest 
at M-I stage (7A2) was associated with decrease in intracellular Ca2+ as evidenced by decreased fluorescence intensity as compared 
to oocytes at M-II stage in control group (7A1) after 12 hours of in vitro culture in rat oocytes. Bar = 80 µm. (B) The CTCF analysis of 
fluorescence intensity of Fluo-3 in db-cAMP treated and control group as shown in Figure 7B. Values are expressed as mean ± S.E.M of 
three independent experiments. Data were analyzed by Student’s t-test. “*” denotes significant (p < 0.05) increase as compared to control 
oocytes. 

Figure 8: Representative photograph showing mitochondrial membrane potential in control group and oocytes treated with 1 mM db-cAMP 
after 12 hours and 24 hours. A significant increase in mitochondrial activity in oocyte as evidenced by the high ratio of red/green florescence 
in 1 mM of db-cAMP treated group (12 hours) as compared to 24 hours treatment group. Data was presented as mean ± standard error of 
the mean (SEM) of three independent experiments. 
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Table 1: Effect of db-cAMP (mM) on oocytes during in vitro culture.

In-vitro culture
(Concentration) Oocytes at 0 hours (n) Oocytes after 12 hours (n) % Resumption from M-I arrested oocytes

db-cAMP (Control) 13 10 77.11b

db-cAMP (1 mM) 13 1 7.69a

“n” represents the total number of oocytes taken during the in vitro culture. ab, values with different superscript characters last column indicate a 
statistically significant difference (P < 0.05). Data were analysed using the χ2 test and were obtained by performing 3 replicates. db-cAMP, dibutyryl 
cAMP; M-I, Metaphase-I.

Figure 9 :Representative photograph showing acridine orange/PI staining for analysis of cell viability after db-cAMP treatment in control, 
12 hours and 24 hours group. Prolonged culture in db-cAMP induced apoptotic morphological changes in oocyte and extrusion of PB-I 
also observed but with distorted morphology (24 hours group; white arrow) as evidenced by increased PI staining and reduced AO staining 
compared to control and 12 hours group (yellow and blue arrow). Three independent experiments were conducted to confirm the results. 
Bar represents 20 μm.

Alterations in the concentration of a variety of signal molecules 
may have a direct or indirect effect on MPF stabilisation or 
destabilisation [37-39]. Our data demonstrate that stabilisation of 
MPF may be maintained and phosphorylation of Thr-14 and Tyr-
15 in oocytes treated with 1 mM db-cAMP for 12 hours. Oocytes 
cultured with 1 mM db-cAMP for 12 hours showed a substantial 
increase in the level of Thr-161 of Cdk1 compared to oocytes 
cultured with other doses of db-cAMP, resulting in meiotic arrest 
in the M-I stage. Similarly, oocytes treated with 1 mM db-cAMP for 
12 hours showed a significant decrease in cyclin B1 level when 
compared with 0.25 mM db-cAMP treated oocytes; this indicates 
the decrease in the level of cyclin B1, which causes a meiotic arrest 
and keeps M-I arrest in the 1 mM db-cAMP treated group [40, 41]. 
Oocytes must complete the transition from the M-I to M-II stage 
of meiosis in order to release PB-I and become the correct gamete 
[42, 43]. Several physiological variables influence oocyte meiosis 

as the oocyte undergoes this trip. Ensuring meiotic arrest and 
meiotic resumption by adjusting the amount of an MPF [40], cAMP 
is one of the essential physiological components of oocyte meiosis 
that governs meiotic competence of oocytes. The oocyte protein 
phosphatase (MPF) activity is regulated by cAMP-dependent 
protein kinase A (PKA) [37].

 cAMP in oocytes controls meiotic arrest [9]. Several 
investigations show that high intraoocyte cAMP levels maintain 
meiotic arrest in mature oocytes, whereas low levels resume 
meiosis [41]. Increasing the dose of db-cAMP kept the oocyte in 
total arrest for up to 12 hours at 1 mM (5.31 ± 0.82%) in multiple 
in vitro tests. Compared to 1 mM db-cAMP-treated oocytes, 
control oocytes display meiotic resumption (76.32 ± 5.802%) 
and PB-I at the M-II stage. These groups (0.5, 0.25, and 0.125 
mM) showed meiotic restart and reduced cAMP expression as 
db-cAMP concentration fell.  db-cAMP increases cAMP and cGMP 
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levels in cultured oocytes, improving nuclear and cytoplasmic 
maturation and slowing ageing [6,9]. Thus, 1 mM db-cAMP may 
reduce spontaneous meiotic resumption, oocyte ageing, and 
oocyte growth in diverse ART programmes. Thus, 1 mM db-cAMP 
increased intraoocyte cyclic nucleotides, causing a complete 
meiotic halt. Reduced intraoocyte cAMP and cGMP levels in 
control oocytes promote cAMP-phosphodiesterase 3A (PDE 3A) 
[44, 45]. A decrease in intraoocyte cAMP may destabilise MPF and 
cause meiotic resumption after M-I arrest and PB-I extrusion. A 
modest increase in ROS stimulates the meiotic cell cycle in vitro, 
while high amounts alter mitochondrial potential and induce 
apoptosis [46].

Our results showed that 1 mM db-cAMP treatment during 
oocyte maturation resulted in higher levels of intracellular reactive 
oxygen species (ROS) and Ca2+ in comparison with the control 
group. Previous research, however, has shown the importance of a 
modest rise in ROS and Ca2+ during the maturation of mammalian 
oocytes [24,47]. However, our findings support that increasing the 
culture duration of an oocyte in db-cAMP may result in a rise in 
reactive oxygen species (ROS) and Ca2+ levels [46, 48], suggesting 
that an oocyte cultivated in 1 mM of db-cAMP may be fertile if not 
incubated for more than 12 hours. If the concentration and culture 
duration are raised beyond 12 hours, mitochondrial damage 
may occur in the oocytes. In spite of this, we have conducted 
experiments showing that db-cAMP treatment may keep cells in 
meiotic arrest for 12-18 hours.

Conclusion

In conclusion, one of the biggest obstacles to in vitro embryo 
development is improving reproductive outcomes during oocyte 
maturation. When the oocyte is removed from the antral follicle for 
in vitro maturation (IVM), cAMP levels inside the oocyte decrease, 
and meiosis restarts on its own owing to a lack of inhibitory 
chemicals in the follicle. Increased cAMP concentrations prior 
to IVM have been shown to enhance oocyte competence and, by 
extension, embryonic development in a number of species. Our 
results show that mammalian oocytes can be maintained in meiotic 
arrest (M-I stage) for up to 12 hours following treatment with 1 
mM db-cAMP without compromising their viability, mitochondrial 
distribution, or developmental competence during in vitro culture. 
Since db-cAMP plays a critical function in regulating many oocyte 
development factors during oocyte handling in in vitro fertilisation, 
greater investigation into this route is warranted.
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