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Introduction

Cannabis has a long history in Central and South Asia, as it 
was used to produce hemp fibre for rope, clothing and paper, 
but was also consumed both for recreational and medicinal 
purposes. The two major neuro active components in cannabis 
are the psychoactive Δ9-tetrahydro-cannabinol (Δ9-THC) and 
the non-psychoactive cannabidiol (CBD). Recent years have 
seen a resurgence in interest in the therapeutic potential of 
compounds derived from cannabis, due to significant advances 
in our understanding of cannabis ingredients and endogenous 
brain cannabinoid (ECB) system, which consists of G-protein-
coupled cannabinoid (CB) receptors, endocannabinoids 
such as N-Arachidonoylethanolamide (Anandamide) and 
2-Arachidonoylglycerol (2-AG), synthetic and degradative 
enzymes, and transporters. 

Common medical conditions for which marijuana is allowed 
in the US (i.e., those conditions shared by at least 80 percent of 
medical marijuana states) are: Alzheimer’s disease, Amyotrophic 
Lateral Sclerosis, cachexia/wasting syndrome, cancer, Crohn’s 
disease, epilepsy and seizures, glaucoma, hepatitis C virus,

human immunodeficiency virus/acquired immunodeficiency 
syndrome, Multiple Sclerosis and muscle spasticity, severe 
and chronic pain, severe nausea and Post-Traumatic Stress 
Disorder [1]. The advances in our understanding of exogenous 
cannabinoids actions and the physiology of ECB system, have 
led to important new insights, which are likely to result in 
the development of novel therapeutic strategies forkey CNS 
disorders.

Autism

Autismis characterized by deficits in communication and 
social interaction, as well as by stereotypic behaviors, restricted 
patterns of interest, and abnormal sensory issues [2]. Frequently, 
comorbid conditions include intellectual disability (65 %), 
seizures (30 %), and different forms of sleepproblems [3,4].  

 
Two of the most prominent features of autism are abnormal 
brain neuron organization [5] and immune system dysregulation 
[6,7]. During foetal life, CB1 receptors and their associated ECBs 
are important for neuron differentiation and proper axonal 
migration [8].

Modulation of CB1 receptors could trigger autism by 
interrupting normal brain development, as they are particularly 
abundant in forebrain sub-ventricular zones and cortical 
structures, which play a key role in cell proliferation and 
migration, respectively. They are also transiently located in 
forebrain white matter structures, which are essential for cell 
migration and axonal elongation during brain development 
[9,10]. In contrast to CB1 receptors, CB2 receptors were 
primarily detected in immune cells and at too much lesser extent 
in the brain, where they are acting as immunomodulators. 

Neuro inflammation is a frequent finding in autistic 
individuals and include differential monocyte responses, 
abnormal T-helper cytokine levels, decreased T-cell mitogen 
response, decreased numbers of lymphocytes, abnormal serum 
immunoglobulin levels. antibodies against central nervous 
system and maternal proteins [11]. If we postulate that autism 
is neuro-immunological disorder, modulation of CB1 and CB2 
receptors signaling could offer one of the promising therapeutic 
options.

ECB signaling and social interaction processing systems: 
Initial stages of social interaction require overcoming, negative 
valence systems (e.g. fear, anxiety), in order to initiate the 
interaction and are reinforced by positive valence systems 
(e.g. reward learning, reward valuation). Cognitive systems 
(i.e. attention, perception, working memory) then guide 
the exchange after social interaction has commenced, while 
social process systems (i.e. affiliation and attachment, social 
communication, perception of self and others) exert supramodal 
control to coordinate germane practices. Dysfunction in one 
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construct intrinsically affects social information processing 
and impacts the ability to function typically. Role of cannabis 
in modulating social interactions was first observed by French 
psychiatrist Dr. Jacques Moreau de Tours in 19th century. Dr 
Moreau noted similarities between experiences in healthy 
humans after ingesting North African hashish (which contains 
very high concentration of THC), and dysfunctions in his patients 
that he called ‘neurological dysregulation’ and ‘social alienation’ 
[12]. He described these symptoms as fluctuations of emotions 
(i.e. negative valence), extreme happiness and excitement 
(i.e. positive valence), errors of time and space, illusions and 
hallucinations (arousal/regulatory) and irresistible impulses 
and dissociation of ideas (i.e. cognitive domain) [13]. Human 
studies have shown that marijuana heightens the saliency of 
social interactions [14], enhances interpersonal communication 
[15], and decreases hostile feelings within small social groups 
[16]. The neural mechanisms underlying these prosocial effects 
are unclear but are likely to involve activation of CB1 receptors, 
the main molecular target of marijuana in the human brain. 
Consistent with this idea, CB1 receptors are highly expressed 
in associational cortical regions of the frontal lobe, but also in 
subcortical structures involved in social-emotional functioning 
[17,18]. Moreover, the receptors and their endogenous 
lipid-derived ligands, anandamide and 2-AG [19], have been 
implicated in the control of social play [20] and social anxiety 
[21] in laboratory animals, which are two crucial aspects of 
animal social experience. Plausible explanation of all these 
effects, is that oxytocin, which has primary physiological 
function to heighten the saliency of social stimuli, triggers 
an anandamide-mediated signal in the nucleus accumbens 
(NAc), thus influencing synaptic plasticity via activation of 
local CB1 receptors. Other modulatory neurotransmitters may 
also play a role in regulating the interaction between oxytocin 
and anandamide, such as serotoninwhich is needed for the 
expression of oxytocin-dependent plasticity in the NAc [22], and 
dopamine which has been implicated in striatal anandamide 
signaling [23]. Additional hypothesis is that some of social 
behavioral deficits in autism arise dueto deficits in reward 
system functioning [24,25]. This is supported by studies that 
report a lack of social motivationin children with autism,who do 
not find social stimuli rewarding and hence do not attend to them 
as much as normal children [26,27]. An alternative formulation 
of the social motivationhypothesissuggests that the attention of 
individuals with andwithout autism is drawn to social stimuli 
to a comparable extent,but individuals with autism find social 
stimuli less rewarding [28,29].

All scientific research findings mentioned above suggest that 
ECB system is involved in regulation of at least three key features 
known to be atypical in autism: 

i. Neural development. 

ii. Immunological system modulation and 

iii. Social interaction/reward responsivity. 

Further research of this system is necessary, to develop valid 
and reliable diagnostic biomarkers and specific therapeutic 
interventions.

Fragile X syndrome

Fragile X syndrome (FXS) is a neuro developmental disorder 
characterized by cognitive impairment, attention deficit, 
hyperactivity, anxiety, unstable mood, autistic behaviors, 
language delay and seizures [30]. This X-linked chromosome 
disorder is the most common known cause of autism with 30% 
of boys meeting full autism criteria [31]. FXS is caused by a 
trinucleotide repeat expansion (CGG) in the FMR1gene, which 
results in the loss of expression of fragile X-mental retardation 
protein (FMRP) [32], an RNA binding protein that negatively 
regulates synaptic protein synthesis [33]. Recent advances in 
FMR1 allele analysis, allow rapid and inexpensive assessment 
of CGG repeat size, the number of AGG interruptions and 
methylation status from blood or saliva samples [34]. 

This FMR1 DNA test is currently used for detection of Fragile 
X carriers and early diagnosis of FXS. In research settings animal 
model used to mimic FXS in humans is the FMR1 knockout mice, 
where knockout of FMR1 gene removes FMRP [35]. It was shown 
that mutations in this gene are linked to enhancement of mGluR 
GpI signaling, especially at mGluR5, and lead to altered synaptic 
plasticity in FXS [36]. Possible interpretation of this finding, is 
that activation of metabotropic glutamate receptor (mGluR) 
Group I (GpI) i.e. mGluR1 and mGluR5, enhances FMRP synthesis 
[37], while its absence results in a loss of translational controland 
enhancement of cerebral and mGluR protein synthesis. This 
interconnection supported the development of “mGluRtheory 
of fragileX”, published in 2004., that identifies FMRP as a key 
downstream regulator of mGluR activation (specifically mGluR5) 
[37].

The theory in line with current scientific knowledge about 
cross-talk between glutamatergic and ECB system, which 
acts as an neuromodulatory system that fine-tunes excitatory 
glutamatergic synaptic transmission [38]. This fine control is 
obtained through CB1 receptors which are profusely expressed 
in presynaptic terminals of glutamatergic cells [39], where 
they preclude release of glutamate upon stimulation by ECBs. 
Maejima et al. [40] have confirmed that heightened postsynaptic 
activation of mGluR5 inFMR1knockout mice, increased Gp1 
mGluR dependent ECB mobilization (synthesis and release), 
anddesensitizedCB1 receptors which led to increased propensity 
for uncontrolled neuronal firing. 

Unfortunately, results from animal models did not translate 
to humans with FXS, as targeted stimulation of mGluR5 did not 
lead to symptom improvement [41]. Since then the focus shifted 
to GABA and the hypothesis that decreased GABA transmission 
in cerebral cortex underlies FXS pathophysiology. GABA ergic 
neurotransmission is also modulated by ECB system, especially 
by CB1 receptors, which are 10–20 times more expressed in 
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inhibitory than in excitatory terminals,in specific brain regions 
such as hippocampus andcerebellar cortex [42], Therefore 
targeting disturbed GABAergic neurotransmission via CB1 
receptors, might represent a novel concept in development of 
effective treatment options for FXS.

Future studies especially in human population are needed 
for better understanding of interactions between FMRP and ECB 
system, as these would pave the way for development of FXS 
specific biomarkers and treatment interventions.

Conclusion

Although basic research and preclinical data support the use 
of exogenous cannabinoids THC and CBD in neuro developmental 
disorders such as Autism, Fragile X Syndrome and other Autism 
Spectrum Disorders. double blind placebo controlled trials are 
urgently needed to establish efficacy, safety and extent of benefit 
on the quality of life of all endocannabinoid-mimetic compounds.

vast numbers of siblings, only two of which need to survive 
to reproduce and continue the genetic line.

Thus, nurture (learning) reigns among anthropoids and 
nature (genetics) at the other extreme where simple instinctive 
patterns of behavior suffice for survival of the species.
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