ISSN: 2575-8608

Ancient Mathematical Physics V

Paul T E Cusack*
Engineer, 23 Park Ave. Saint John, NB E2J 1R2, Canada
Submission: September 16, 2021; Published: September 29, 2021
*Corresponding author: Paul T E Cusack, Engineer, 23 Park Ave. Saint John, NB E2J 1R2, Canada

Abstracts

Continuing with the theme of Ancient mathematical physics, we see in this paper that Brahmagupta knew more mathematical physics than we previously knew until Astrotheology.

Keywords: Brahmagupta; Ancient Indian Mathematics; Astrotheology

Introduction

In this paper, we consider what Brahmagupta knew in 600 AD. We will see that he knew more mathematical physics than we knew today, until Astrotheology Brahmagupta (597-668AD) the great Indian Mathematician, knew all this math and physics. For example, he had a value for $\mathrm{Pi}=3.162$; knew the quadratic equation; found the formula to calculate the area of a four-sided figure inscribed in a circle; established rules for working with positive and negative numbers. The debate between Newton and Leibniz is a moot point. Calculus was known to the Indian Mathematician Brahmagupta in the $7^{\text {th }}$ Century. It may have been known centuries earlier by the Sumerians, Babylonians, and Egyptians.

From the blog "The Storey of Mathematics", we learn that the Babylonian Mathematicians knew all about Astrotheology Mathematics [1].

They knew for example that:

$$
\begin{aligned}
& E=1 / \sin 60^{\circ} \text { Hexadecimal system } \\
& 60=1=E \\
& 1 / 3661=2.731491127=1+\sqrt{ } 3 \\
& M=\operatorname{Ln} t=\operatorname{Ln} 1=0 \text { Zero as a place holder. } \\
& E^{2}=t^{2}=(\sqrt{ }-1)^{2}=-1 \text { Squares }
\end{aligned}
$$

Reciprocals $E=1 / t$
$t=1$
$t=\sqrt{ } 3$ eigenvector
$\sqrt[3]{8}=2=E=G$
$E=\sqrt{ } 2$ to 5 decimal places
$t=\pi=3.125=3+125=t+\left(-E_{\text {min }}\right)$
$a^{2}+b^{2}=c^{2}$
$3^{2}+4^{2}=5^{2}$ (3 knuckles/ finger; 4 fingers $\times 3$ knuckles=12;
5 digits $\mathrm{x} 12=60$)
$t=3 ; E=5 t^{2}-t-1=$
$d E / d t=2 t-1$
$E=d E / d t+$
$y=y^{\prime}$
$t^{2}-t-1=2 t-1$
$t=3 ; E=5$
$t^{2}+M^{2}=E^{2}$
$K E+P E=T E$
$1 / 2 M v^{2}+M c^{2}=T E$
$1.5(M) c^{2}=1.5(4) x 9=54=60-6$
$60=1 / 60=0.01666$
(Figure 1) Functions, algebra, linear equations, quadratics, cubic

Global Journal of Archaeology \& Anthropology

Figure 1: 3-4-5- triangle \& the superforce.
$t^{2}-t-1=E$ (Quadratic function) =eigenfunction roots $t=-0.618 ; 1.618$
Reciprocals $x=1 /(x-1)=t^{2}-t-1$
$2 t-1=0$ Linear $($ Matrices $)$
Babylonian Hydraulic Engineering:
Bernoulli's Equation 1738 AD, is one form:
Head=Pressure Head + Elevation Head Velocity Head
$H=p / \gamma+z+V^{2} / 2 g$
$=P E+P E+K E$
$4+5+3$
$=12$ (3 knucles and 4 digits)
Or:
$H=M c^{2}+F d t+1 / 2 M v^{2}$

Aside:
$F=G M s t$
$=6.67(4)(\sqrt{ } 3)^{2}$
$=8$
$E=1 / \sin \theta=1 / F=1 / 8=1.25$
$=(4)\left(3^{2}\right)+M G s t+1 / 2(4)(1 / \sqrt{ } 2)^{2}$
$=36+1.25+3$
$=40.25$
=Reynold's Number
$0.402 / 60=6.7=\sim 6.67=G$
$F=G M=6.7 \times 4=2.68=$ Superforce
$F=G M=-6.7(4)(4 / 3) x 3 / s q r t 3=-61.8=i=t$
This all comes from Astrotheology Mathematics (Figures 2 \& 3).

Figure 2: GMP; Ln t; e^{\wedge}-t.

Figure 3: Critical Area.

So how do we get negative area?
Area of triangle by vertices=
$1 / 2\{17.3(0.618)+1.618(2.51-12)+24(12-0.618)\}$
$=1 / 2(10.6914+(-15.35)+2.73168)$
$=1 / 2(-2.00)$
$=(-1)=E$
$t^{\wedge} 2-t-1=E=-1$
$t=0,1$

The Area turned out to be
$-1=E$ Can we have negative area? Yes $/-E t=-t^{\wedge} 2=(-- \text { sqrt }-1)^{\wedge} 2=-1$
$t^{\wedge} 2-t-1=-1$
$t=0,1 . \mathrm{t}$ is always positive. $M=\operatorname{Lnt}=E$
$-1=\operatorname{Ln} t$
$t=e^{\wedge}-1$ which is always positive.
Time is always positive. Yet, E can be negative (Figure 4).

Figure 4: Area of a triangle by vertices.

So, M can be negative between $0 \& 1$.
$-t \neq \operatorname{Ln} t$
So, time is always positive. Energy can be negative (-1). Mass can be negative.
$E=1 / t-1=1 / t t=-1$
$E=1 / t$
$\int E d t=\int 1 / t$
$\int(-1) d t=\operatorname{Ln} t$
$\int E d t=E^{2} / 2 \Rightarrow E^{2}=$ always positive.
If $E=-1,(-1)^{2} / 2=1 / 2=$ positive.
Time is always positive.
So
Positive x positive=-positive

Negative x negative =positive.
Positive x negative $=$ negative
$t x(-1)=(-E t)$ Negative area.
$0 \leq t \leq 1 \Rightarrow E=-v e M=-v e$
$E=1 / t$
$E=t$
t is always positive. Therefore, E must always be positive. And M must also be always positive.

$$
\begin{aligned}
& t=-0.618=i=(\operatorname{sqrt}(-1) \\
& t^{\wedge} 2=\left(\operatorname{sqr}(-1)^{\wedge} 2\right.
\end{aligned}
$$

$$
t^{\wedge} 2=-1=\text { Area }
$$

$$
\text { E x } t=-1=\text { Area }
$$

Therefore, t can be negative.

Conclusion

We see that there is proof that at math is ancient. The ancient mathematicians knew a lot more mathematical physics than we previously thought.

References

1. Brahmagupta | The Great Indian Mathematician and Astronomer (cuemath.com).

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats

(Pdf, E-pub, Full Text, Audio)

- Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php

