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Introduction

HVAC systems provide thermal comfort and healthy indoor 
environments for occupants and support manufacturing. (Figure 
1) shows typical integrated and interrelated SMF HVAC systems. 
They are crucial for maintaining optimal environmental conditions 
in SMFs to ensure efficient chip production [1]. The performance 
and energy efficiency of HVAC systems depends on various factors 
or data sources, including design, installation, operation, and 
maintenance. (Figure 2) demonstrates the structure of modeling 
methods of three distinct approaches: white-box, black-box, and 
gray-box models. Especially, black-box models (data- driven/ 
empirical/ inverse methods) generally apply AI and ML methods 
to build predictive models [2] and provide good prediction 
accuracy [3-5]. However, they require a large amount of data to 
be built due to ML techniques [2,6]. By combining these three 
categorical modeling methods, a comprehensive system analysis, 
design, and optimization can be achieved.

The integration of AI and ML techniques can enhance HVAC 
system optimization by capturing and analyzing large amounts of 
data [7]. (Figure 3) illustrates the relationships between AI and  

 
HVAC by using data and modeling. Those data-intensive approaches 
in AI and ML can be employed to generate novel solutions and 
predict future outcomes in HVAC system optimization. Within 
AI and ML, DL techniques might be appropriate for accurate 
predictions and for capturing complex systems. In recent years, 
DL models (e.g., deep reinforcement learning, deep neural 
networks, convolutional neural networks, and transfer learning) 
in AI methodologies have been widely applied to HVAC system 
analysis [8-16]. In this case, HVAC degradation modeling can be 
achieved by using NNs in DL with the goal of data-intensive energy 
optimization and energy efficiency.

AI tools, such as Generative AI, can improve prediction 
accuracy and control in HVAC systems [17]. NNs can be the 
architecture in Generative AI for the modeling process for HVAC. 
(Figure 4) illustrates developing Generative AI models requires 
NNs. (Table 1) shows Generative AI is tied to degradation modeling 
from white-box, black- box, and gray-box perspectives. Generative 
AI can play a role in addressing equipment degradation in HVAC 
systems when it is used in the context of predictive maintenance 
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and system optimization. (Table 2) presents some works showing 
that more data is needed for modeling. Generative AI models are 
highly suggested to generate new, original content through NNs. 

Therefore, the optimization of HVAC systems through AI-assisted 
techniques is highly considered to enhance performance and 
energy savings [18].

Figure 1: SMF HVAC systems include different individual components that work together.

Figure 2: The three types of modeling methods used in HVAC systems.

Figure 3: Data from HVAC provides AI to do the modeling.
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Figure 4: Generative AI needs neural networks to become Generative AI models.

Table 1: The concept of Generative AI from white-box, black-box, and gray-box degradation modeling.

  White box model Black box model Gray box model

Type Physics-based Data-intensive Hybrid

Representation The underlying degradation mecha-
nisms.

A complex neural network generates data 
without revealing internal mechanisms.

Use physics-based equations for 
some degradation factors but 

leverage data-intensive methods 
for others.

Benefit Interpretability Variability Adaptivity

Explanation Understand the fundamental degrada-
tion mechanisms.

Learn patterns from observed degradation 
data.

Create more adaptive simulated 
system 

degradation over time.

Table 2: Modeling and evaluation gaps about more data needed or real data lacking.

Problem or gap addressed Models/Algorithms Sources

The Brasilia database needs more data. ANNs (ceramic claddings’ service life estimation) Souza et al. (2020) [19]

Validation without real-time The Stochastic Petri net model (ceramic cladding Ferreira et al.

degradation data. degradation prediction over time) (2019) [20]

Limited generalization abilities 
due to low training data scenarios.

BasicPhaseAE, CNN-RNN Earthquake Detector, DeepPhasePick, 
EQTransformer, and PhaseNet Münchmeyer et al. (2022) [21]

Deficiency in understanding data 
requirements.

Model-based (relying on system physics) and Data- based (using 
ML, stats, and NNs). Melgaard et al. (2022) [22]

Discussion

This paper focuses on applying Generative AI in HVAC systems 
for energy efficiency optimization, predictive maintenance 
modeling, and data augmentation for predictive models (Figure 
5) provides a diagram for Generative AI to model the SMF HVAC.

The problem to be addressed is degradation affecting system 
performance and operation efficiency over HVAC systems’ 
lifecycle. The data collection is to gather historical data on the 
performance and temperature conditions of HVAC components 
and to analyze the lifecycle. For instance, temperature, humidity, 
and airflow data in any HVAC system such as MAUs can be used to 
begin the modeling process. Figure 6 illustrates the air processing 
for a cleanroom MAU that generates the data needed for modeling 
and conditions of outdoor air provided for a cleanroom. The 
learning dataset provided by inputs from the data collection plays 
a critical role in Generative AI modeling by providing the necessary 
information and examples for training the model to generate new 

data samples that closely resemble the original dataset. In the 
evaluation process, the validation dataset from outputs serves 
to guide decisions and analyze errors to see how to optimize the 
Generative AI model. When the model performance assessed using 
the validation dataset is positive in leading to the development of a 
robust and reliable Generative AI model, the degradation problem 
can be effectively executed.

Generative AI models can help identify the most efficient 
operating parameters by modeling different control strategies 
and environmental conditions, potentially reducing wear and tear 
on components and extending equipment life. The integration of 
Generative AI in HVAC systems can lead to better management, 
improved energy efficiency, and extended equipment lifespan.

Conclusion

Many semiconductor companies are implementing energy 
efficiency in their fabs [23]. In SMF, the design, installation, and 
operation of HVAC systems for cleanrooms are very energy-
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intensive. Even though these existing modeling methods require 
a large amount of measured and historical data, emerging trends, 
and technologies such as Generative AI are being applied to those 
data-intensive HVAC energy modeling for system optimization to 
reduce energy consumption. It is becoming increasingly popular 
to use intensive data, combined with machine learning algorithms, 
to optimize HVAC control strategies to enhance energy efficiency.
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