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Introduction

Gas sensor, as a vital expedient to perceive harmful gases, offers 
a vibrant course to watch the density and ecological info of gas in 
view of assuring the protection of ecology [1]. The gas-detection 
course comprises very feeble communications that are tough to 
sense in practice. Computations may deliver significant perception 
regarding the detection method, e.g., probable adsorption 
conformations, favored adsorption places, adsorption energy, 
charge transport, alterations in optical and electronic attributes, 
and diverse styles to improve adsorption which may partake a 
dynamic part in the progress and manufacture of effectual gas and 
biomolecule detectors [2]. 2D nanostructured resources, counting 
graphene-based structures [3], phosphorene [4], silicene [5], 
germanene [6], metal oxides [7], transition metal dichalcogenides 
[8], MXenes [9], binary oxides [10] etc. exhibit great gas-detection 
capability. The sensing mechanism of these 2D nanostructures  

 
are mostly electrochemical [11] in nature, i.e. chemiresistive, and 
charge transfer between host and analyte is the most important 
phenomenon behind the gas detection course. The efficacy of gas 
sensing for a particular layered nanomaterial depends on a host of 
vital characteristics such as the number of atomic layers, presence 
or absence of defects/dopants, the conductivity of the host etc 
[12]. The graphene-analogous nanosheets bid prospects to tailor 
them by means of surface functionalization, introduction of 
decorating substance or defects and formation of hybrid structure 
by combination with another material with varied constituents. 
Experiments are necessary to test competence of a gas sensor in 
terms of sensitivity, selectivity, specificity, response and recovery 
time etc [13]. However, finding the actual knowhow behind the 
sensing mechanism in terms of charge transfer in atomic scale is 
beyond the current capability of practical investigation, though 
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such information is quite necessary in order to design and develop 
cost effective gas detectors [14].

The outcomes forecast by hypothetical replications may 
corroborate well with the pragmatic quantities and offer 
meaningful thoughts for the associated detection mechanism. 
With the arrival of high-speed, huge-memory supercomputers, 
widespread electronic structure reproductions are nowadays 
pretty viable, and the calculation means and courses are improving 
every now and then [15]. Numerous renowned procedures for 
quantum calculations are braced by several nifty and widespread 
codes, both marketable and free [16]. Yet there are many contests 
for conjectural calculations: Detection parameters are quite 
complex to the selection of the replication inputs [17]. Thus, one 
has to be much cautious concerning the simulation actions and 
inferring the consequences. The basis of electronic structure 
simulations originates since the advancement and birth of 
quantum theory in the first part of last century [18]. Quantum 
theory not just provided an innovative intuition in consideration 
of physics but introduced accuracy and forecasting ability as well. 
The applicability of quantum mechanics is unlimited, whether it 
is in basic or functional twigs of science. Most significantly, a real-
world course or scheme can be displayed using the equations 
of quantum mechanics [19]. Though, equations such as the 
Schrodinger equation may not be answered rationally excepting 
for some modest arrangements which are for the majority, 
extraneous for their minor gauges. Solving such an equation 
needs urbane numerical methods. These quantum mechanical 
approaches are inimitable in the sagacity that replicating 
system does not necessitate any experiential prototype or fitting 
parameters since they are first principle or ab initio in form [20]. In 
other words, such approaches do not need any erstwhile data from 
trials and may be utilized to investigate any prearranged scheme. 
Moreover, electronic structure simulations permit investigators to 
compute physical properties that may not be quantified straight 
or are unreachable for the pragmatists such as the binding energy 
of the atom or a molecule in a scheme. Such approaches can be 
incorporated in discovering novel compounds that can have a 
specific attribute and may be compared to current ones saving 
both experimental capitals and time. Numerous attributes of such 
supposed compounds can be foretold before turning it informal 
for the investigator while probing for a specific property. Hence, in 
general, simulations of materials deliver another stage of thought 
that may not be achievable since experiment.

Density Functional Theory (DFT) was recognized in 1964 
with the two propositions hypothesized by Hohenberg and Kohn 
[21], followed by an array of equations developed by Kohn and 
Sham [22]. The cause DFT is well-thought-out as a foremost 
revolution in computational physics is for its correctness and 
viability. This turn DFT superior to other quantum chemistry 
methods e. g., the Hartree-Fock (HF) method [23] based on many-
body wave function as the central capricious of the scheme. DFT 

on the other hand, considers the electron density. The key to 
notable accomplishment in DFT is the selection of appropriate 
approximations to the Exchange-Correlation Functional [24]. Yet, 
in order to refine the obtained outcome, many times it becomes 
necessary to incorporate suitable corrections such as hybrid 
functionals, dispersion force etc [25]. A few parameters are 
very significant for gaining rationally precise outcomes. These 
parameters may also be property reliant as the convergence of the 
property may depend on somehow completely diverse stricture 
standards. For instance, the energy cutoff (Ecut) is a vital constraint 
to attain correct magnitudes for the ground-state characteristics. 
Again, another imperative parameter for a precise DFT calculation 
is the k-point sampling. Unlike the Ecut, selecting an appropriate 
grid to model the Brillouin Zone is seldom a modest chore, and 
occasionally lower values for sampling may be more suitable than 
those at higher value.

The gas-detection knowhow in graphene and graphene-related 
layered inorganic analogs is founded on the charge transfer course 
where the sensing resource performs as charge donor or acceptor. 
This charge transport course alters the resistance of the detector 
substance which aids in sensing the gases. During the desorption 
procedure, the resistance of the detecting stuff yields to its original 
stage. Theoretical replication of 2D sensing materials is much 
valuable as it may impart thorough understanding about charge 
transportation, bonding, and orbital interactions which are tough 
to obtain by experiments. It may also investigate the detection 
machinery and sensing presentation of numerous resources to plan 
suitable sensor for the experimentalist to develop. Even though 
there are a number of ab-initio calculation approaches, e.g., DFT 
[21-22], Hartree-Fock [23], quantum Monte Carlo [26], coupled 
cluster [27], multireference configuration interaction [28], etc., 
the furthermost extensively used method is the first-principles 
calculation founded on DFT simulations since it rationally and 
proficiently defines the weak interaction between adsorbates and 
sensing resources. The outcomes foretold by DFT simulations 
may back pragmatic findings and offer theoretical insight on the 
mechanism of gas detection. Numerous mature marketable or 
free quantum software packages are available for carrying out 
electronic structure simulations in a convenient way. The greatest 
prevalent and vastly used such packages are VASP [29], SIESTA 
[30], Quantum Espresso [31], Abinit [32], etc. Interested readers 
may refer to a few recently published references [33-37] as 
examples for obtaining actual feel about the involved tasks usually 
done for theoretically simulating gas detection.

Conclusion

Although scientific research regarding gas sensing by layered 
nanostructure yielded appreciable progress over the last decade 
or so, resulting in newer, compact and efficient gas sensors, cost 
of such materials is still not attractive for large scale industrial 
production at many places. This is so because there are still many 
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drawbacks such as wider bandgap, thermodynamic stability over 
narrower temperature range etc. limiting their space for better 
application. Lowering of detection limit, selective detection, and 
reduction in recovery time are still challenging and these require 
thoughtful engineering of the nanometric material through either 
increase in active site, tailoring the ease of charge transfer, usage 
of filters or change in ambience’s wavelength by use of different 
monochromatic light etc. These trials need involvement of huge 
capital for successful development of appropriate gas sensors with 
better attributes. Ab-initio calculation offer a smarter choice for 
gathering useful information regarding feasibility and efficacy of 
any nanometric sensing material for detecting a particular gas or 
biomolecule by carrying out computer simulation which is much 
cheaper than practical experiment. Moreover, it is possible to 
interpret the sensing knowhow by postprocessing the simulation 
data which is helpful in deciding whether it is of worth to develop 
such gas sensor for practical purpose. The greatest advantage of 
such simulation method is that it can be done without any prior 
physical knowledge. In particular DFT is most popular for its 
accuracy and versatility over the others since it considers electron 
density as the variable and that is logical and consistent as per 
today’s thought. Hence, theoretical simulation can be considered 
to be an indispensable part for sustainable development of novel 
layered nanostructured gas sensors.
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