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Introduction

Microbial community composition is among major key 
indicators of plant health and productivity. In essence, the 
microbial profile of a place is deterministic of activities that are 
carried out by them in an intricate, balanced, and integrated way, 
helping plants adapt swiftly and with poise to environmental 
change. Remarkably, microbes are present in wide range of 
climatic conditions, including stressful environments, evolving 
through countless individual generations and seemingly 
endless environmental adaptations. A considerable amount 
of literature shows that Plants develop strategic methods in 
order to cope with stressful conditions for their survival and 
reproduction  [1]. Also, Interdependent microbes of microbial 
communities possess a role in plant spread. Among all the 
microbes, fungi are of major interest in the field of microbiology. 
In successive history of land plants, plant-fungus associations  

 
have evolved in relation to the exploitation of different habitats 
and different population structures. Extensive studies show 
that Hyper-diverse multicellular eukaryotic organisms of fungi 
contribute 50–90% of the biomass of total soil microorganisms  
[2]. With an estimated population size of 3.8 million species 
in the kingdom fungi, explicitly including yeasts, rusts, smuts, 
mildews, molds and mushrooms, only 3% is named so far [2].  
Fungi are quite diverse and unique, having dependency upon 
other organisms for their energy and carbon uptake. Much of 
these spore-bearing organisms are placed into true nine phylum-
level clades viz Opisthosporidia, Chytridiomycota (chytrids), 
Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, 
Mucoromycota, Glomeromycota (arbuscular mycorrhizae), 
Basidiomycota (club fungi) and Ascomycota (sac fungi) [3]. 
Interestingly, it has been found that 74% of all plant species form 
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Fungi, as significant components of temperate and tropical ecosystems, hold a crucial role in the recycling of organic matter and the distribution 
of nutrients across different trophic levels. Despite the immense diversity within the global fungal community, its taxonomic and functional 
aspects remain largely uncharted. The utilization of high-throughput sequencing (HTS) in molecular studies has begun to reveal the expansive 
diversity within the fungal kingdom. While HTS has its limitations, it notably enables species-level identification of uncultured and uncommon 
taxa. This review delves into various sequencing technologies employed to characterize microbial diversity within alpine regions. The utilization 
of Next-Generation Sequencing (NGS) for analyzing interspecific variation in the Internal Transcribed Spacer (ITS) region emerges as a swift and 
efficient approach for fungal characterization. This investigative approach, coupled with mycorrhizal morphotyping, demonstrates a valuable 
amalgamation for comprehensively assessing fungal diversity. The primary objective of this study was to furnish a user-friendly and cost-effective 
solution using prevalent DNA sequencing methods, ensuring optimal accuracy and minimized processing time.
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arbuscular mycorrhizae (AM), 2% of plants form Ectomycorrhizal 
(ECM) associations, 9% of plants form orchid mycorrhizas and 
1% of plants form ericoid mycorrhizas  [4].

Among plants advantageous symbiotic fungal relationships 
fall largely in two categories- mycorrhizal fungi (fungus root) 
and within plant fungus (endophytic fungi) [4]. For local 
ectomycorrhiza, host environment is predominantly boreal and 
temperate forests with ECM fungi able to spread through the 
proliferation of extramatric mycelium and rhizomorphs to various 
infection sites on a gradient of tens of centimeters to several 
meters [5]. Nonetheless, the most ecologically and economically 
significant forest trees like Pinaceae, Fagaceae, Betulaceae, 
Nothofagaceae, Myrtaceae, Leptospermoideae, Dipterocarpaceae, 
and Caesalpiniaceae Amhersteae - undergoes ECM symbiotic 
partnership [6]. They play a vital role in nutrient cycling through 
their mycelium’s specific activity in the absorption and supply 
of soil nutrients to the plant [7]. In addition to ECM, endophytic 
mycoboita has received considerable attention in recent years 
but their role in forest structure still remains in infancy [8]. 
Nearly all plant organs (such as roots, stems, leaves, bulbs, fruits 
and seeds) possess endophytes mostly widely reported from 
phylum Ascomycetes (Fungi Imperfecti) [9]. in case of forests 
they generally exist as saprotrophs and pathogenic endophytic 
species [10]; [8] with prospective impact on the health and 
disease progression of convinced tree species [11]. Also, in many 
trees and shrubs, dark septate endophytes (DSE), characterized 
by melanised and septate hyphae, are dominantly present as root 
endophytes [12].

Navigating the Technological Epoch: Unveiling 
Fungal Diversity in the Genomic Era

The Himalayan coniferous forests give as an excellent 
habitat for macro-fungi occurring in different months due to 
large variation in climate, altitude, slope, and type of vegetation 
However, recent research in Kashmir Himalayas on the diversity of 
macro-fungi and their ectomycorrhizae is still in its revolutionary 
stage [13];  [14].  Amanita, Russula, Boletus, Lactarius, Suillus 
and Cortinarius and four new species viz., Russula aurea, Russula 
atropurpurea, Suillus variegates,, and Boletus rhodoxanthus are 
among the most abundant ectomycorrhizae on the record [14]. 
Mostly morphological methods have developed meticulously 
researched reference guides [15];  [16] for species classification 
and recognition, but these have been used to classify and describe 
a fairly small and limited number of species, and many specific 
types are basically defined as inaccurate types with unknown 
commonalities [15];  [16],  [17]. Practically all microbe knowledge 
is in fact “laboratory knowledge,” obtained in circumstances 
of optimally developing them in artificial media in pure culture 
National Research Council [18]. Hence, traditional cultivation 
methods limit the analysis to those that grow under laboratory 
conditions. Despite this, the identification of fungi is a continuing 

classical concern to the entire discipline of microbiology. With the 
recent advent of the age of molecular suites and bioinformatics 
methods for species identification, whole microbe population 
analysis has been prompted. In particular, the use of these 
molecular methods to classify fungi has replaced traditional 
identification methods in which only a portion of the fungal taxa 
has been identified using sporocarps [19]; [20]. All Together 
Restriction fragment length polymorphism (RFLP) and sequence 
analysis of the ITS region proved useful techniques for the 
identification of sporocarp-based mycorrhizas [21];  [20]. Recent 
studies have shown that DNA-based approaches are feasible 
to describe, identify, and classify numerous species either 
from a single bulk sample of whole organisms or from a single 
environmental sample (soil, water, fecal, etc.) for the extensive 
taxonomic repository [22]. 

Furthermore, in the last decade, technological advancements 
in high-performance sequencing have brought exponential 
growth in understanding of this diversity of organisms through 
the sequencing of selective metabarcoding marker genes directly 
from environmental samples [23]. Exclusively, 16S rRNA and ITS 
regions are sequenced and analyzed using Quantitative Insights 
Into Microbial Ecology (QIIME) to study root-zone bacterial and 
fungal populations in samples [24]. The internal transcribed spacer 
(ITS) region is now widely used as a validated DNA barcode marker 
for the identification of many fungal species [25]. HTS techniques, 
however, have come with a myriad of vulnerabilities and possible 
prejudices, recommending against unscrupulous use and analysis 
of HTS technologies and outcomes. Presently, the high-throughput 
study of fungal species draws from second and third generation 
HTS technologies. Around 2008-2014, the second-generation 
platform 454 pyrosequencing Roche was the key utility player in 
high-throughput sequencing (HTS) studies of fungal species, this 
however is comparatively expensive as such discontinued in 2016. 
Never seen widespread use in mycology, techniques like Gene 
Studio & Ion Torrent PGM are believed to struggle around through 
homopolymer-rich regions and lengths of reading leading to a slip 
between pyrosequencing and Illumina sequencing. The crucial 
evaluation of HTS technologies and data and the continuously 
developed, optimized and enhanced bioinformatics pipelines 
now permit a detailed understanding of fungal communities 
[26]. Whereas Illumina-based sequencing offers unparalleled 
sequencing capacities and the capacity to multiplex hundreds of 
samples among the available high-performance technologies, it 
does not access reads from the entire ITS region (ITS1, 5.8S, and 
ITS2) without including the slight chance of overlapping such 
reads in the 5.8S region generating longest read of 2*300 bp only 
[27]. Thus, data generated from DNA shows stark differences in 
both taxonomy and marker coverage in the reference sequence 
databases of fungal kingdom.

In Third generation HTS, Pacific Biosciences, helps produce 
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long reads with an average of 20 –25 kb extending up to 100 kb. 
Whereas the latest Sequel instrument produces approximately 
400,000 reads/ sMrt cell which is much less read than the 
Illumina platform but is of relatively high quality. Thus making 
this platform suitable for sequencing amplicons of short to 
medium length such as the entire ITS region and probably its 
flanking region genes for specific phylogenetic placement [28]. 
Among third-generation analysis methods Oxford Nanopore 
Technologies (ONT), including Oxford Nanopore MinION, GridION 
and PrometION, are relatively cost effective with unprecedented 
average read length of >10kb from single flow cell Giordano [29]. 
The MinION apparatus, because of its portable can be run on any 
powerful laptop [30] cutting the need samples transportation 
to other places and enabling easy DNA sequencing [28]. This 
method comes with high average error rate of 5%-20% [31-33] 
but the advantage of ONT sequencing is the moderate price and 
the fast-processing time. Many improved pipelines and methods 
for multiple consensus sequencing and improving read quails 
greatly improved the applicability of Oxford Nanopore sequencing 
in microbial ecology. The other key purpose of this method is to 
provide a budget-effective and easy-to-use process that small 
research labs with shoestring budgets can implement to foster 
a large generation of complete ribosomal reference data that 
could potentially help fill our areas for improvement in fungal 
identification [34-36].

Conclusion

Mountain ecosystems are dynamic ecosystems with a plethora 
of microbes associated with them. In recent times, the exploration 
of fungal diversity has entered an unprecedented era with the 
advent of advanced genomic technologies. Such technologies 
have provided us with a profound understanding of the pivotal 
role that fungi play in temperate and tropical ecosystems. 
Through high-throughput sequencing and molecular studies, we 
have been able to uncover the intricate mechanisms underlying 
organic matter cyclization and nutrient distribution across 
various trophic levels in these ecosystems. The sheer diversity 
of the global fungal community, previously uncharted at both 
taxonomic and functional levels, has been illuminated by these 
cutting-edge techniques. Despite the challenges and limitations 
that accompany high-throughput sequencing, it has proven to 
be a transformative tool capable of identifying species within 
previously uncultured and rare taxa : [37-39]. Our exploration of 
microbial diversity within alpine environments has highlighted 
the power of Next-Generation Sequencing (NGS), particularly 
when analyzing interspecific variation in the Internal Transcribed 
Spacer (ITS) region. This approach, combined with mycorrhizal 
morphotyping, offers a robust and comprehensive strategy for 
unraveling fungal diversity. As we conclude this review, it becomes 
evident that the fusion of technological advancements with 
ecological insights has opened new frontiers for understanding 

the intricate relationships between fungi and their ecosystems. 
NGS continues to reshape our perspective, offering an easy-to-use, 
accurate, time-efficient, and cost-effective solution for unraveling 
fungal diversity using prevailing DNA sequencing methods. The 
journey embarked upon in this era is far from over, as continued 
innovation promises even deeper insights into the enigmatic 
world of fungal ecology and its critical implications for ecosystem 
health and sustainability. The study encourages and permits to 
carrying out of resynthesis experiments using morpho molecular 
methods of characterization of species and to understand diverse 
microbial diversity to better understand nutrient transfer systems 
with plant species to improve the growth and conservation of 
alpine species.
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