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Abstract

Differential Evolution (DE) is a population based stochastic search algorithm for optimization. DE has three main control parameters, 
Crossover (cr), Mutation factor (F) and Population size (NP). These control parameters play a vital and crucial rule in improving the 
performance of search process in DE. This paper introduces a brief review for control parameters in Differential evolution (DE).
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Introduction
Differential Evolution (DE) is a population-based heuristic 

algorithm proposed by Storn & Price [1] to solve global 
optimization problems with different characteristics over 
continuous space. Despite its simplicity, it proved a great 
performance in solving non-differentiable, non-continuous and 
multi-modal optimization problems [2]. DE has three main control 
parameters which are the crossover (CR), mutation factor (F) and 
population size (NP). The values of the control parameters affect 
significantly on the performance of DE. Therefore, the tuning of 
those control parameters is considered a challenging task. DE has 
a great performance in exploring the solution space and this is 
considered as the main advantage, on the other side, an obvious 
weak point is its poor performance in exploitation phase which 
may cause a stagnation and/or premature convergence.

The next section introduces differential evolution. Section 
3 introduces a short review for control parameters in DE. And 
finally, the paper is concluded in section 4.

Differential Evolution 
In simple DE, DE/rand/1/bin [1,2], an initial population of NP 

individuals  jX
 , j=1,2,.., NP , is generated at random according to a 

uniform distribution within lower and upper boundaries ( , )L U
j jx x . 

Individuals are evolved by the means of crossover and mutation to 
generate a trial vector. The trial vector competes with his parent 
in order to select the fittest to the next generation. The steps of 
DE are:

Initialization of a population
Initial population in DE, as the starting point for the process 

of optimization, is created by assigning a random chosen value for 
each decision variable in every vector, as indicated in equation (1).

                      
0 *( )ij j j j jx L rand U L= + − 		            (1)

Where ,j jL U : the lower and upper boundaries for jx ,  
jrand

: a random number uniform [0, 1]. 

Mutation
A mutant vector 1G

iv +  is generated for each target vector G
ix  at 

generation G according to equation (2)

          1 2 3

1 ( )G
i

G G G
r r rFv x x x+ = + ∗ − , 1 2 3   ir r r≠ ≠ ≠ 	          (2)

Where 1 2 3, ,r r r are randomly chosen from the population. 
The mutation factor ]2,0[∈F . A new value for the component of 
mutant vector is generated using (1) if it violates the boundary 
constraints.

Recombination (crossover)
Crossover is the process of swapping information between 

the target and the mutated individuals using (3), to yield the trial 
vector 1G

iu + . Two types of crossover can be used, binomial crossover 
or exponential crossover.
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where j =1,  2,..,  D , rand( j) [0,1]∈  is the jth  evaluation of a 
uniform random number. Crossover rate (CR) is between 0 and 1, 
r and (i) is a random index between 1 and D to ensures that 1G

iu +

gets at least one element from 1G
iv + ; otherwise, the population 

remains without change.

In the exponential crossover, a starting index l  and a number 
of components w are chosen randomly 

from the ranges { , }l D and { , 1}l D − respectively. The values 
of variables in locations l  to l w+  from 1G

iv +  and the remaining 
locations from the G

ix  are used to produce the trial vector 1G
iu + .

Selection
Greedy scheme for fast convergence of DE. The child 1G

iu +  
is compared with its parent G

ix  to select the better for the next 
generation according to the selection scheme in equation (4).

                           1 11 ,  ( )  ( )
,     otherwise
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A detailed description of standard DE algorithm is given in 
Figure 1.

Figure 1: Pseudocodeof standard DE algorithm.

Short Review
During the last two decades, the problem of finding the 

balance between the exploration and exploitation has attracted 
many researchers in order to improve the performance of DE by 
developing new mutation strategies or hybridizing promising 
mutation strategies.

Das et al. [3] proposed an improved variant of DE/target-
to-best/1/bin based on the concept of population members’ 
neighborhood. Zhang & Sanderson [4] proposed a new mutation 
strategy “DE/current-to-pbest” with an optional external archive 
that utilizes the historical data in order to progress towards the 
promising direction and called it JADE. Qin, Huang & Suganthan 
[5] proposed SaDE, in which a self-adaptive mechanism for trial 

vector generation is presented, that is based on the idea of learning 
from the past experience in generating promising solutions. 
Mohamed et al. [6-8] proposed a novel mutation strategy which 
is based on the weighted difference between the best and the 
worst individual during a specific generation, the new mutation 
strategy is combined with the basic mutation DE/rand/1/bin 
with equal probability for selecting each of them. Li & Yin [9] used 
two mutation strategies based on the best and random vectors. 
Mohamed [10] proposed IDE, in which new triangular mutation 
rule that selects three random vectors and adding the difference 
vector between the best and worst to the better vector. The new 
mutation rule is combined with the basic mutation rule through a 
non-linear decreasing probability rule. And a restart mechanism 
to avoid the premature convergence is presented. Recently, 
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triangular mutation has been also used to solve IEEE CEC 2013 
unconstrained problems [11], constrained non-linear integer and 
mixed-integer global optimization problems [12], IEEE CEC2006 
constrained optimization problems [13], CEC 2010 large-scale 
optimization problems [14], and stochastic programming 
problems [15].

Extensive research was presented for controlling the 
parameters, as control parameters play a vital role in the evolution 
process. Brest et al. [16] presented a new self-adaptive technique 
for controlling the parameters. Noman & Iba [17] proposed an 
adaptive crossover based on local search and the length of the 
search was adjusted using hill-climbing. Peng et al. [18] proposed 
rJADE, in which a weighting strategy is added to JADE, with a 
“restart with knowledge transfer” method in order to benefit from 
the knowledge obtained from the previous failure. Montgomery 
& Chen [19] presented a complete analysis of how much the 
evolution process affected by the value of CR. Mallipeddi et al. [20] 
proposed a pool of values for each control parameter to select the 
appropriate value during the evolution process. Wang, Cai & Zhang 
[21] proposed a new method that randomly chooses from a pool 
that contains three strategies in order to generate the trial vector 
and three control parameter settings, they called it CoDE. Yong et 
al. [22] presented CoBiDE, in which a covariance matrix learning 
for the crossover operator and a bimodal distribution parameter 
to control the parameters are introduced. Draa, Bouzoubia & 
Boukhalfa [23] introduced a new sinusoidal formula in order to 
adjust the values of crossover and the scaling factor, they called it 
SinDE. A complete review could be found in [24,25].

DE mechanism depends on selecting three random individuals 
from the population to perform the mutation process. Therefore, 
the population size must be greater than the selected vectors. 
Large population size increases the diversity but consumes 
more resources (function calls), while small population size may 
cause stagnation or tripping in local optima. Thus, the choosing 
of the population size is considered a very critical aspect. From 
the literature, it has been found that researchers choose the 
population size in four different ways.

i.	 Choosing the population size for each problem separately 
based on the experience or previous knowledge and keep it 
constant during all runs [26,27]. 

ii.	 Relate the population size to the problem dimensionality 
[6,28,29]. 

iii.	 Setting the population size fixed during all runs and 
independent of the dimension of the problems [22,30].

iv.	 Allowing the population size to vary during the runs 
using adaptation rule [31-33]. A complete review of population 
size could be found in [34,35]. 

Conclusion 
Control parameters plays a vital rule in the evolution process 

of the DE. Over the last decades, many EAs have been proposed 

to solve optimization problems. However, all these algorithms 
including DE have the same shortcomings in solving optimization 
problems. One of them is the choice of the control parameters 
which are difficult to adjust for different problems with different 
characteristics. This paper introduced a brief review for a 
considerable number of research studies that have been proposed 
to enhance the performance of DE.
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