

Research Article

Volume 31 Issue 1 - January 2026

DOI: 10.19080/CTOIJ.2026.31.556305

Cancer Ther Oncol Int J

Copyright © All rights are reserved by Mustafa Akin

Assessment of Tumor Size Changes Following Systemic Therapy for Triple Negative Breast Cancer (TNBC)

Mustafa Akin*

Department of Radiation Oncology; University of Health Sciences, Balikesir Ataturk Health and Application Center, Balikesir, Turkey

Submission: December 05, 2025; **Published:** January 09, 2026

Corresponding author: Mustafa Akin, Department of Radiation Oncology; University of Health Sciences, Balikesir Ataturk Health and Application Center, Balikesir, Turkey

Abstract

Objective: Cancers of the breast comprise a major public health concern with critical incidence, morbidity and mortality rates worldwide. Triple negative breast cancer (TNBC) is a distinctive subgroup of breast cancers with a more aggressive disease course and poorer prognosis. Systemic therapies may be utilized for TNBC management. While treatment sequencing and therapies for TNBC are evolving, TNBC patients may benefit from systemic treatment. In this study, tumor size changes after systemic therapy for TNBC was evaluated.

Materials and Methods: In the context of this study, purpose was assessment of tumor size changes after systemic therapy for TNBC. For this endpoint, patients with TNBC having available imaging data as part of their workup have been evaluated. All included patients have received systemic treatment and then were referred for RT at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences. I performed a comparative analysis of tumor sizes at imaging scans of the patients before and after systemic treatment.

Results: I found a considerable decrease in tumor sizes after systemic treatment for patients with TNBC.

Conclusion: In the current study, I documented tumor size changes following systemic treatment for TNBC. As the primary result, I found a considerable decrease in tumor sizes after systemic treatment for patients with TNBC. My findings might have implications for consideration of adaptive RT strategies for these patients; however, further studies are warranted to shed light on this critical issue.

Keywords: Triple negative breast cancer (TNBC); Systemic treatment; Tumor size changes; Computed Tomography; Adaptive

Abbreviations: TNBC: Triple Negative Breast Cancer; IGRT: Image Guided RT; Adaptive RT; IMRT: Intensity Modulated RT; CT: Computed Tomography; LINAC: Linear Accelerator

Introduction

Cancers of the breast comprise a major public health concern with critical incidence, morbidity and mortality rates worldwide [1-3]. Triple negative breast cancer (TNBC) is a distinctive subgroup of breast cancers with a more aggressive disease course and poorer prognosis [4-6]. Unfortunately, both the disease itself and treatments used for management of TNBC may deteriorate quality of life with adverse events. For the time being, optimal management of TNBC may be achieved through combinations of treatment modalities including surgery, radiation therapy (RT), and systemic agents [4-6]. As for RT, several forms of irradiation could be utilized, and contemporary technologies including intensity modulation and adaptive RT techniques offer great

potential for improved outcomes.

While the use of higher effective doses may result in increased local control rates, toxicity profile of radiation delivery should be strongly considered for quality-of-life concerns. Recent years have witnessed unprecedented advances in technology which paved the way for improved radiotherapeutic results. Automatic segmentation techniques, Image Guided RT (IGRT), molecular imaging methods, Intensity Modulated RT (IMRT), stereotactic RT, and adaptive RT (ART) have been introduced for improved therapeutic ratio [7-100]. In the context of millennium era, optimal therapeutic outcomes for TNBC might only be achieved through close collaboration among relevant disciplines for cancer management. Tumor boards offer improved cooperation among

surgical oncologists, radiation oncologists, and medical oncologists by providing a good platform for discussing thoroughly about individualized patient, tumor, and treatment characteristics.

Thus, tumor boards may improve determining the individualized therapy for optimal patient management. Systemic therapies may be utilized for TNBC management [4-6]. The rationale behind systemic treatment might include reduction of the disease burden before administration of subsequent therapies. Also, systemic treatment could prevent widespread dissemination of the disease which may be critical considering the aggressive clinical course of TNBC. On the other hand, there may also be controversies regarding utilization and sequencing of systemic treatments in view of the risk for delaying local treatments such as RT or surgery. While treatment sequencing and therapies for TNBC are evolving, selected subgroups of TNBC patients may benefit from systemic treatment. In this study, I evaluated tumor size changes after systemic therapy for TNBC.

Materials and Methods

Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences has been serving as a tertiary cancer center for patients from Turkey and abroad for decades. Several benign and malignant tumors are irradiated here by using modernized equipment and contemporary technologies including IGRT, IMRT, ART, stereotactic RT, automatic segmentation techniques, and molecular imaging methods [7-94]. In the context of this study, I aimed at assessment of tumor size changes after systemic therapy for TNBC. For this endpoint, patients with TNBC having available imaging data as part of their workup have been evaluated. All included patients have received systemic treatment and then were referred for RT at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences.

I performed a comparative analysis of tumor sizes at imaging scans of the patients before and after systemic treatment. Computed tomography (CT) simulations have been performed at CT-simulator (GE Lightspeed RT, GE Healthcare, Chalfont St. Giles, UK) available at our department. Tumor size changes after systemic treatment have been documented for comparative assessment and analysis. Linear Accelerator (LINAC) with the capability of incorporating state-of-the-art IGRT techniques has been utilized for RT. After patient immobilization, planning CT images have been acquired at the CT simulator for RT planning. Thereafter, acquired RT planning images have been transferred to the delineation workstation by the network. Target volumes and critical structures have been contoured on these images and structure sets have been generated. All patients received RT by integration of contemporary RT techniques at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences.

1. Results

This study was designed to investigate tumor size changes

following systemic therapy for TNBC. Irradiation procedures have been performed at our Radiation Oncology Department of Balikesir Ataturk Health and Application Center at University of Health Sciences, Balikesir. Before therapy, all included patients have been individually evaluated by a multidisciplinary team of experts from surgical oncology, medical oncology, and radiation oncology. Patients with TNBC having available imaging data as part of their workup were included. I performed a comparative analysis for tumor sizes at imaging scans of the patients before and after systemic treatment. Treatment simulations of the patients were performed at CT-simulator (GE Lightspeed RT, GE Healthcare, Chalfont St. Giles, UK) available at our tertiary cancer center. Tumor size changes after systemic treatment were documented for comparative assessment. As the main outcome of this study, I found a considerable decrease in tumor sizes after systemic treatment for patients with TNBC.

Optimal RT planning processes included consideration of lesion sizes, localization and association with nearby critical structures. Radiation physicists participated in RT planning procedures with consideration of reports by American Association of Physicists in Medicine (AAPM) and International Commission on Radiation Units and Measurements (ICRU). Monaco RT planning procedure included consideration of electron density, tissue heterogeneity, CT number and HU values in CT images. Main objective of RT planning was to achieve optimal coverage of treatment volumes along with minimized exposure of surrounding critical organs. All patients have been treated by using contemporary RT techniques at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences.

Discussion

Cancers of the breast comprise a major public health concern with critical incidence, morbidity and mortality rates worldwide [1-3]. Triple negative breast cancer (TNBC) is a distinctive subgroup of breast cancers with a more aggressive disease course and poorer prognosis [4-6]. Unfortunately, both the disease itself and treatments used for management of TNBC may deteriorate quality of life with adverse events. For the time being, optimal management of TNBC may be achieved through combinations of treatment modalities including surgery, radiation therapy (RT), and systemic agents [4-6]. As for RT, several forms of irradiation could be utilized, and contemporary technologies including intensity modulation and adaptive RT techniques offer great potential for improved outcomes. While the use of higher effective doses may result in increased local control rates, toxicity profile of radiation delivery should be strongly considered for quality-of-life concerns.

Recent years have witnessed unprecedented advances in technology which paved the way for improved radiotherapeutic results. Automatic segmentation techniques, Image Guided RT (IGRT), molecular imaging methods, Intensity Modulated RT (IMRT), stereotactic RT, and adaptive RT (ART) have been

introduced for improved therapeutic ratio [7-100]. In the context of millenium era, optimal therapeutic outcomes for TNBC might only be achieved through close collaboration among relevant disciplines for cancer management. Tumor boards offer improved cooperation among surgical oncologists, radiation oncologists, and medical oncologists by providing a good platform for discussing thoroughly about individualized patient, tumor, and treatment characteristics. Thus, tumor boards may improve determining the individualized therapy for optimal patient management. Systemic therapies may be utilized for TNBC management [4-6].

The rationale behind systemic treatment might include reduction of the disease burden before administration of subsequent therapies. Also, systemic treatment could prevent widespread dissemination of the disease which may be critical considering the aggressive clinical course of TNBC. On the other hand, there may also be controversies regarding utilization and sequencing of systemic treatments in view of the risk for delaying local treatments such as RT or surgery. While treatment sequencing and therapies for TNBC are evolving, selected subgroups of TNBC patients may benefit from systemic treatment. In this study, I evaluated tumor size changes after systemic therapy for TNBC. Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences has been serving as a tertiary cancer center for patients from Turkey and abroad for decades.

Several benign and malignant tumors are irradiated here by using modernized equipment and contemporary technologies including IGRT, IMRT, ART, stereotactic RT, automatic segmentation techniques, and molecular imaging methods [7-94]. In the context of this study, I aimed at assessment of tumor size changes after systemic therapy for TNBC. For this endpoint, patients with TNBC having available imaging data as part of their workup have been evaluated. All included patients have received systemic treatment and then were referred for RT at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences. I performed a comparative analysis of tumor sizes at imaging scans of the patients before and after systemic treatment. Computed tomography (CT) simulations have been performed at CT-simulator (GE Lightspeed RT, GE Healthcare, Chalfont St. Giles, UK) available at our department. Tumor size changes after systemic treatment have been documented for comparative assessment and analysis.

Linear Accelerator (LINAC) with the capability of incorporating state-of-the-art IGRT techniques has been utilized for RT. After patient immobilization, planning CT images have been acquired at the CT simulator for RT planning. Thereafter, acquired RT planning images have been transferred to the delineation workstation by the network. Target volumes and critical structures have been contoured on these images and structure sets have been generated. All patients received RT by

integration of contemporary RT techniques at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences. This study was designed to investigate tumor size changes following systemic therapy for TNBC. Irradiation procedures have been performed at our Radiation Oncology Department of Balikesir Ataturk Health and Application Center at University of Health Sciences, Balikesir. Before therapy, all included patients have been individually evaluated by a multidisciplinary team of experts from surgical oncology, medical oncology, and radiation oncology.

Patients with TNBC having available imaging data as part of their workup were included. I performed a comparative analysis for tumor sizes at imaging scans of the patients before and after systemic treatment. Treatment simulations of the patients were performed at CT-simulator (GE Lightspeed RT, GE Healthcare, Chalfont St. Giles, UK) available at our tertiary cancer center. Tumor size changes after systemic treatment were documented for comparative assessment. As the main outcome of this study, I found a considerable decrease in tumor sizes after systemic treatment for patients with TNBC. Optimal RT planning processes included consideration of lesion sizes, localization and association with nearby critical structures. Radiation physicists participated in RT planning procedures with consideration of reports by American Association of Physicists in Medicine (AAPM) and International Commission on Radiation Units and Measurements (ICRU). Precise RT planning procedure included consideration of electron density, tissue heterogeneity, CT number and HU values in CT images. Main objective of RT planning was to achieve optimal coverage of treatment volumes along with minimized exposure of surrounding critical organs.

All patients have been treated by using contemporary RT techniques at Department of Radiation Oncology at Balikesir Ataturk Health and Application Center, University of Health Sciences. Optimal target definition and critical organ sparing may be considered among the pertinent aspects of RT in the millenium era. While definition of larger treatment volumes might result in excessive radiation induced toxicity, determination of smaller treatment volumes could ultimately lead to therapeutic failures. Adaptive RT strategies and multimodality imaging-based target definition were suggested to improve outcomes. In the current study, I documented tumor size changes following systemic treatment for TNBC. As the primary result, I found a considerable decrease in tumor sizes after systemic treatment for patients with TNBC. My findings might have implications for consideration of adaptive RT strategies for these patients; however, further studies are warranted to shed light on this critical issue.

References

1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A (2025) Cancer statistics, 2025. CA Cancer J Clin 75(1): 10-45.

2. Kim J, Harper A, McCormack V, Sung H, Houssami N, et al. (2025) Global patterns and trends in breast cancer incidence and mortality across 185 countries. *Nat Med* 31(4): 1154-1162.
3. Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, et al. (2025) Breast cancer: pathogenesis and treatments. *Signal Transduct Target Ther* 10(1): 49.
4. Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z (2025) Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. *Eur J Pharmacol* 988: 177202.
5. Jie H, Ma W, Huang C (2025) Diagnosis, Prognosis, and Treatment of Triple-Negative Breast Cancer: A Review. *Breast Cancer* (Dove Med Press) 17: 265-274.
6. Chen Z, Liu Y, Lyu M, Chan CH, Sun M, et al. (2025) Classifications of triple-negative breast cancer: insights and current therapeutic approaches. *Cell Biosci* 15(1): 13.
7. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2022) Optimal timing of thoracic irradiation for limited stage small cell lung cancer: Current evidence and prospects. *World J Clin Oncol* 13(2): 116-124.
8. Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2021) Evaluation of breathing-adapted radiation therapy for right-sided early stage breast cancer patients. *Indian J Cancer* 58(2): 195-200.
9. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Omission of Radiation Therapy (RT) for Metaplastic Breast Cancer (MBC): A Review Article. *International Journal of Research Studies in Medical and Health Sciences* 6(1): 10-15.
10. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Concise review of stereotactic irradiation for pediatric gliial neoplasms: Current concepts and future directions. *World J Methodol* 11(3): 61-74.
11. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2020) Adaptive radiation therapy of breast cancer by repeated imaging during irradiation. *World J Radiol* 12(5): 68-75.
12. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Gamsiz H, et al. (2020) Multimodality management of cavernous sinus meningiomas with less extensive surgery followed by subsequent irradiation: Implications for an improved toxicity profile. *J Surg Surgical Res* 6: 056-061.
13. Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, Uysal B, et al. (2020) Single Fraction Stereotactic Radiosurgery (SRS) versus Fractionated Stereotactic Radiotherapy (FSRT) for Vestibular Schwannoma (VS). *J Surg Surgical Res* 6: 062-066.
14. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). *Arch Otolaryngol Rhinol* 6: 016-020.
15. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. *Curr Radiopharm* 12(1): 4-10.
16. Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. *Indian J Cancer* 56(2): 151-156.
17. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. *World J Clin Oncol* 10(11): 369-374.
18. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. *Indian J Cancer* 56(3): 202-206.
19. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. *Jpn J Radiol* 36(6): 401-406.
20. Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. *Int J Radiol Imaging Technol* 80: 187-190.
21. Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. *Int J Radiol Imaging Technol* 80: 187-190.
22. Dincoglan F, Sager O, Demiral S, Uysal B, Gamsiz H, et al. (2017) Radiosurgery for recurrent glioblastoma: A review article. *Neurol Disord Therap* 1: 1-5.
23. Demiral S, Dincoglan F, Sager O, Gamsiz H, Uysal B, et al. (2016) Hypofractionated stereotactic radiotherapy (HFSRT) for who grade I anterior clinoid meningiomas (ACM). *Jpn J Radiol* 34(11): 730-737.
24. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, et al. (2015) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. *Tumori* 101(2): 179-184.
25. Gamsiz H, Beyzadeoglu M, Sager O, Demiral S, Dincoglan F, et al. (2015) Evaluation of stereotactic body radiation therapy in the management of adrenal metastases from non-small cell lung cancer. *Tumori* 101(1): 98-103.
26. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. *Tumori* 101(1): 84-90.
27. Sager O, Dincoglan F, Beyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: Current concepts, recent advances and future perspectives. *CNS Oncol* 4(2): 105-114.
28. Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Gamsiz H, et al. (2014) Evaluation of linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. *Ann Saudi Med* 34(1): 54-58.
29. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of Linear Accelerator (Linac)-Based Stereotactic Radiosurgery (Srs) for the Treatment of Craniopharyngiomas. *UHOD-Uluslararası Hematoloji Onkoloji Dergisi* 24(2): 123-129.
30. Sager O, Beyzadeoglu M, Dincoglan F, Gamsiz H, Demiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. *Tumori* 100(2): 184-188.
31. Ozsavaş EE, Telatar Z, Dirican B, Sager O, Beyzadeoğlu M (2014) Automatic segmentation of anatomical structures from CT scans of thorax for RTP. *Comput Math Methods Med* 2014: 472890.
32. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (linac)-based stereotactic radiosurgery (srs) for the treatment of craniopharyngiomas. *UHOD - Uluslararası Hematoloji-Onkoloji Dergisi* 24: 123-129.
33. Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. *Tumori* 100(2): 179-183.
34. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. *Tumori* 100(3): 302-306.

35. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience. *Tumori* 99(5): 617-622.

36. Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. *J BUON* 18(3): 717-722.

37. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. *Tumori* 99(1): 76-82.

38. Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. *Neoplasma* 60(3): 322-327.

39. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. *Neoplasma* 59(3): 333-340.

40. Sağır Ö, Dinçoglu F, Gamsız H, Demiral S, Uysal B, et al. (2012) Evaluation of the impact of integrated [18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging on staging and radiotherapy treatment volume definition of nonsmall cell lung cancer. *Gulhane Med J* 54: 220-227.

41. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) The Role of Active Breathing Control-Moderate Deep Inspiration Breath-Hold (ABC-mDIBH) Usage in non-Mastectomized Left-sided Breast Cancer Radiotherapy: A Dosimetric Evaluation UHOD - Uluslararası Hematoloji-Onkoloji Dergisi 22(3): 147-155.

42. Dincoglan F, Sager O, Gamsız H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. *Gulhane Med J* 54: 190-198.

43. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin S et al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. *Tumori* 98: 630-635.

44. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2024) Assessment of Changes in Tumor Size After Induction Systemic Therapy for Locally Advanced Cervical Squamous Cell Carcinoma Running title: Tumor size changes in cervical carcinoma. *Cancer Ther Oncol Int J* 26(1): 001-007.

45. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Radiosurgery Treatment Planning for Pituitary Adenomas. *Canc Therapy & Oncol Int J* 13(2): 555857.

46. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Multimodality Imaging for Radiosurgical Management of Arteriovenous Malformations. *Asian Journal of Pharmacy, Nursing and Medical Sciences* 7: 7-12.

47. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2019) Evaluation of Radiosurgery Target Volume Determination for Meningiomas Based on Computed Tomography (CT) And Magnetic Resonance Imaging (MRI). *Cancer Sci Res Open Access* 5: 1-4.

48. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of target definition based on Multimodality imaging for radiosurgical Management of glomus jugulare tumors (GJTs). *Canc Therapy & Oncol Int J* 15: 555909.

49. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Incorporation of Multimodality Imaging in Radiosurgery Planning for Craniopharyngiomas: An Original Article. *SAJ Cancer Sci* 6: 103.

50. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Evaluation of Target Definition for Radiotherapeutic Management of Recurrent Merkel Cell Carcinoma (MCC). *Canc Therapy & Oncol Int J* 24(2): 556133.

51. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2023) Reappraisal of Treatment Volume Determination for Recurrent Gastroesophageal Junction Carcinoma (GJC). *Biomed J Sci & Tech Res* 50(5): 42061-42066.

52. Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2023) An Original Article Revisiting the Utility of Multimodality Imaging for Refined Target Volume Determination of Recurrent Kidney Carcinoma. *Canc Therapy & Oncol Int J* 23(5): 556122.

53. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Appraisal of Target Definition for Recurrent Cancers of the Supralottic Larynx. *Biomed J Sci & Tech Res* 50(5): 42131-42136.

54. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2022) Assessment of Target Definition for Extramedullary Soft Tissue Plasmacytoma: Use of Multimodality Imaging for Improved Targeting Accuracy. *Canc Therapy & Oncol Int J* 22(4): 556095.

55. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Target Volume Determination for Recurrent Uterine Carcinosarcoma: An Original Research Article Revisiting the Utility of Multimodality Imaging. *Canc Therapy & Oncol Int J* 22(3): 556090.

56. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Reappraisal of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Target Definition for Radiotherapeutic Management of Recurrent Anal Squamous Cell Carcinoma (ASCC): An Original Article. *Canc Therapy & Oncol Int J* 22(2): 556085.

57. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2022) An Original Article for Assessment of Multimodality Imaging Based Precise Radiation Therapy (Rt) in the Management of Recurrent Pancreatic Cancers. *Canc Therapy & Oncol Int J* 22(1): 556078.

58. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2022) Assessment of Target Volume Definition for Precise Radiotherapeutic Management of Locally Recurrent Biliary Tract Cancers: An Original Research Article. *Biomed J Sci & Tech Res* 46(1): 37054-37059.

59. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2022) Radiation Therapy (RT) Target Volume Determination for Locally Advanced Pyriform Sinus Carcinoma: An Original Research Article Revisiting the Role of Multimodality Imaging. *Biomed J Sci & Tech Res* 45(1): 36155-36160.

60. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Improved Target Volume Definition for Radiotherapeutic Management of Parotid Gland Cancers by use of Multimodality Imaging: An Original Article. *Canc Therapy & Oncol Int J* 21(3): 556062.

61. Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Reappraisal of multimodality imaging for improved Radiation Therapy (RT) target volume determination of recurrent Oral Squamous Cell Carcinoma (OSCC): An original article. *J Surg Surgical Res* 8: 004-008.

62. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Multimodality imaging-based treatment volume definition for recurrent Rhabdomyosarcomas of the head and neck region: An original article. *J Surg Surgical Res* 8(2): 013-018.

63. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2022) Appraisal of Target Definition for Management of Paraspinal Ewing Tumors with Modern Radiation Therapy (RT): An Original Article. *Biomed J Sci &*

Tech Res 44(4): 35691-35696.

64. Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Assessment of Target Volume Definition for Contemporary Radiotherapeutic Management of Retroperitoneal Sarcoma: An Original Article. *Biomed J Sci & Tech Res* 44(5): 35883-35887.

65. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2021) Assessment of Multimodality Imaging for Target Definition of Intracranial Chondrosarcomas. *Canc Therapy Oncol Int J* 18: 001-005.

66. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Impact of Multimodality Imaging to Improve Radiation Therapy (RT) Target Volume Definition for Malignant Peripheral Nerve Sheath Tumor (MPNST). *Biomed J Sci Tech Res* 34: 26734-26738.

67. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Multimodality Imaging Based Treatment Volume Definition for Reirradiation of Recurrent Small Cell Lung Cancer (SCLC). *Arch Can Res* 9(1): 1-5.

68. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2021) Radiation Therapy (RT) Target Volume Definition for Peripheral Primitive Neuroectodermal Tumor (PPNET) by Use of Multimodality Imaging: An Original Article. *Biomed J Sci & Tech Res* 34: 26970-26974.

69. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2021) Evaluation of Target Definition for Management of Myxoid Liposarcoma (MLS) with Neoadjuvant Radiation Therapy (RT). *Biomed J Sci Tech Res* 33: 26171-26174.

70. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Radiation Therapy (RT) target determination for irradiation of bone metastases with soft tissue component: Impact of multimodality imaging. *J Surg Surgical Res* 7(1): 042-046.

71. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Evaluation of Changes in Tumor Volume Following Upfront Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer (NSCLC). *Glob J Cancer Ther* 7(1): 031-034.

72. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Assessment of posterior fossa target definition by multimodality imaging for patients with medulloblastoma. *J Surg Surgical Res* 7(1): 037-041.

73. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Assessment of the role of multimodality imaging for treatment volume definition of intracranial ependymal tumors: An original article. *Glob J Cancer Ther* 7: 043-045.

74. Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2020) Target Volume Determination for Precise Radiation Therapy (RT) of Central Neurocytoma: An Original Article. *International Journal of Research Studies in Medical and Health Sciences* 5(3): 29-34.

75. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2020) Utility of Multimodality Imaging Based Target Volume Definition for Radiosurgery of Trigeminal Neuralgia: An Original Article. *Biomed J Sci & Tech Res* 26(2): 19728-19732.

76. Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Assessment of Target Volume Definition for Radiosurgery of Atypical Meningiomas with Multimodality Imaging. *Journal of Hematology and Oncology Research* 3(4): 14-21.

77. Dincoglan F, Beyzadeoglu M, Demiral S, Sager O (2020) Assessment of Treatment Volume Definition for Irradiation of Spinal Ependymomas: an Original Article. *ARC Journal of Cancer Science* 6(1): 1-6.

78. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2020) Target Volume Definition for Stereotactic Radiosurgery (SRS) Of Cerebral Cavernous Malformations (CCMs). *Canc Therapy & Oncol Int J* 15(4): 555917.

79. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Treatment Volume Determination for Irradiation of Recurrent Nasopharyngeal Carcinoma with Multimodality Imaging: An Original Article. *ARC Journal of Cancer Science* 6: 18-23.

80. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Assessment of Target Volume Definition for Irradiation of Hemangiopericytomas: An Original Article. *Canc Therapy & Oncol Int J* 17(2): 555959.

81. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Treatment Volume Determination for Irradiation of chordoma: an Original Article. *International Journal of Research Studies in Medical and Health Sciences* 5(10): 3-8.

82. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2020) Multimodality Imaging Based Target Definition of Cervical Lymph Nodes in Precise Limited Field Radiation Therapy (Lfrt) for Nodular Lymphocyte Predominant Hodgkin Lymphoma (Nlph). *ARC Journal of Cancer Science* 6(2): 06-11.

83. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Radiosurgery Treatment Volume Determination for Brain Lymphomas with and without Incorporation of Multimodality Imaging. *Journal of Medical Pharmaceutical and Allied Sciences* 9: 2398-2404.

84. Beyzadeoglu M, Dincoglan F, Sager O, Demiral S (2020) Determination of Radiosurgery Treatment Volume for Intracranial Germ Cell Tumors (GCTS). *Asian Journal of Pharmacy, Nursing and Medical Sciences* 8(3): 18-23.

85. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2020) Target Definition of orbital Embryonal Rhabdomyosarcoma (Rms) by Multimodality Imaging: An Original Article. *ARC Journal of Cancer Science* 6(2): 12-17.

86. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Target Volume Determination for Irradiation of Pilocytic Astrocytomas: An Original Article. *ARC Journal of Cancer Science* 6: 1-5.

87. Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Evaluation of Radiosurgery Target Volume Definition for Tectal Gliomas with Incorporation of Magnetic Resonance Imaging (MRI): An Original Article. *Biomedical Journal of Scientific & Technical Research (BJSTR)* 27: 20543-20547.

88. Beyzadeoglu M, Sager O, Dincoglan F, Demiral S (2019) Evaluation of Target Definition for Stereotactic Reirradiation of Recurrent Glioblastoma. *Arch Can Res* 7(1): 3.

89. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High-Grade Gliomas (HGGs). *Concepts in Magnetic Resonance Part A* 2019.

90. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Utility of Magnetic Resonance Imaging (Imaging) in Target Volume Definition for Radiosurgery of Acoustic Neuromas. *Int J Cancer Clin Res* 6: 119.

91. Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2018) Evaluation of Target Volume Determination for Single Session Stereotactic Radiosurgery (SRS) of Brain Metastases. *Canc Therapy & Oncol Int J* 12(5): 555848.

92. Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience. *Vojnosanit Pregl* 68(11): 961-966.

93. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2022) Concise review of radiosurgery for contemporary management of pilocytic astrocytomas in children and adults. *World J Exp Med* 12(3): 36-43.

94. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2023) Adaptive radiation therapy (art) for patients with limited-stage small

cell lung cancer (LS-SCLC): A dosimetric evaluation. Indian J Cancer 60(1): 140-147.

95. Duzova M, Akin M (2022) Evaluation of survival outcomes and prognostic factors in acinic cell carcinomas of the parotid gland receiving adjuvant radiotherapy. Anatolian Current Medical Journal 4(3): 290-294.

96. Akin M, Duzova M (2022) Single fraction image guided radiation therapy for management of bone metastases during the COVID-19 pandemic. Journal of Health Sciences and Medicine 5(4): 961-965.

97. Akin M, Duzova M (2022) Evaluatin of Treatment Volume Determination for Anaplastic Oligodendrogliomas Based on Multimodality Imaging: An Original Article. Celal Bayar Universitesi Saglik Bilimleri Enstitusu Dergisi 9(3): 414-417.

98. Akin M (2022) Tobacco and lung cancer in elderly patients located in southern marmara: epidemiological study. Celal Bayar Universitesi Saglik Bilimleri Enstitusu Dergisi 9(2): 310-313.

99. Cinar D, Karadakovan A, Akin M (2022) Effects of Paper Marbling Art in the Cancer Rehabilitation Process: Descriptive Research. Journal of Traditional Medical Complementary Therapies 5(2): 132-142.

100. Cinkaya A, Akin M, Sengul A (2016) Evaluation of treatment outcomes of triple negative breast cancer. Journal of Cancer Research and Therapeutics 12(1): 150-154.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: [10.19080/CTOIJ.2025.31.556305](https://doi.org/10.19080/CTOIJ.2025.31.556305)

Your next submission with Juniper Publishers
will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
(Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
<https://juniperpublishers.com/online-submission.php>