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Introduction

Smart Textiles

Smart textiles are intelligent textiles that can sense and react 
to environmental stimuli. The E-textile system is fabricated by the 
development of electrical devices like sensors, energy harvesting, 
actuators, storage items, etc. and applications are shown in Figure 
1 [1,2]. Smart textiles interact with the environment and such 
e-textiles exist in different shapes and compositions (woven, 
knitted, or non-woven) [3]. The term e-textiles represents the 
class of fabric structures that sense and respond to environmental 
changes and the multificated environment for smart textiles is 
represented in Figure 2 [4,5].

Smart textiles can perceive and respond to a specific stimulus 
by embedding various components/parts of electronics into 
structures (yarns, fabrics, or garments) [6]. Smart textiles with the 
perspective of energy conduction, and transformation, as well as 
serve the function of protection from environmental hazards [7]. 
The parts having considerable weight and interest in e-textiles are 
sensitive sensors, flexible transistors, and stretchable electronic  

 
tools integrated into yarns, fabrics, or garments [8]. The great 
potential of smart textiles in the medical area has many end uses 
like early recognition, treatment, compliance monitoring, physical 
therapy, and many others [9]. Further integration of electronic 
devices within clothing has increased the growth of e-textiles 
due to developments in materials science and electronics [10]. 
Moreover, the market of smart textiles currently close to $100m 
and is expected to grow towards $5bn in 2027 [11]. Smart textiles 
have many phenomenal uses in the medical field by using pressure 
sensors [12]. The origin of the stimulus may be electrically 
powered, heat, chemical reaction, or other [13]. E-textiles sensing 
ability can be made through both intrinsic and extrinsic means 
[14]. Smart textiles often used well-specialized materials, to 
realize the sensor function [15]. Smart textiles monitoring systems 
with sensor materials containing the design and development, the 
coated yarn has the potential to contribute significantly [16]. In 
the field of research value for applications in health monitoring, 
the sensors with high sensitivity and stretchability are of great 
importance [17].
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Figure 1: (a) Musical jackets with fabric keypad on one side and (b) fabric keypad (Reproduced with the permission of [2]).

Figure 2: Multifaceted surroundings for smart textiles (Reproduced with the permission of [5]).

Figure 3: Electrocardiogram electrode attachment on the chest, robot arm angle controlling for the elbow, and electroencephalogram 
electrode overlay on the auricle and mastoid respectively (Reproduced with the permission of [26]).

Health Monitoring Systems

Wearable health monitoring system provides real-time 
medical monitoring services, and is the combination of computer, 
communication, medical, and technologies that integrates many 

characteristics. Wearable Healthcare systems need electrodes 
that are skin adhering to provide maximum comfort for the 
patients and to process, carry the signals with low resistance [18]. 
Growing inhabitants are infected from various kinds of infections 
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while some are chronic age-related disorders. To deal, ensure the 
monitoring of all those disorders by using conductive materials 
in wearable healthcare systems is the evolution of diagnostic 
technologies in the field of medicine [19]. There are two types 
of health monitoring from both construction (structure), and 
individual (human) body. Telecommunication and information 
technologies allow patients and medical staff to communicate 
easily, and reliably and move the data from one end to another in 
real-time remote health monitoring systems [20]. Structural health 
monitoring has very simple uses due to its multimodal nature [21]. 
There are various techniques/approaches in the structural health 
monitoring research field like the acoustic emission approach 
used for structural defects detection [22]. Health monitoring 
systems have the ability of bio-signals indication at any position. 
Modern healthcare devices are facilitated more with technology 
as per the requirements of the users [23]. Health monitoring 
devices containing conductive fibers/yarns/fabrics process the 
signals from one end to another end/portion of the structure as 
per the requirements [24]. Health monitoring devices have the 
potential for physiological tip-off and such waves provide an 
efficient way for disease diagnosis and health assessment [25,26]. 
Figure 3 represents the electrocardiogram electrode attachment 
on different regions.

Health monitoring systems continuously collect data from 
the body of humans by changing their health status with time. 
Moreover, the sensors used in health monitoring systems are 
highly flexible and comfortable to maintain a natural interaction 
with the human body [27]. Smartphone-based medical devices 
are more famous and widely used all over the globe for fitness 
purposes. Heath monitoring devices can be reduced (miniaturized) 
in size to handle complex computation and sensing efficient 
information [28]. Metamaterials textiles with sensor lattice for 
cordless skeleton are capable of observing constantly the health 
conditions of people by reducing human errors, and also analyse 
the better understanding of diseases from their origin [29]. Body 
health monitoring systems by using wearable sensors, the device 
properties are bio-friendly, lightweight, and attenuated with a 
good span of sensitivity. Optical fiber-based sensors on attachment 
to human skin have the potentials to monitor carpus (wrist) 
vibration, breathing, and pounding of fingers [30]. The usability 
of the whole health monitoring system increases by using wireless 
technologies [31]. Health monitoring allows patients and medical 
staff better communication from one site to another like health 
information data [32].

Materials 

Health Monitoring Based on Fibers

Wet spinning and melt spinning’s are the processes/methods 
of fibers preparation which is electrically conductive [33]. The 
type of materials, fibers configuration, and fibers arrangement 
are the main factors for determining the performance of smart 
textiles [34]. Conductive fibers may also have electrical as well 

as delivering good antimicrobial, anti-static, and electromagnetic 
shielding properties [35]. Conducting polymers/fibers made 
from the thermosetting materials (non-thermoplastic) at low 
temperatures, such as fibers degrade and cannot be remelted or 
reuse [36]. A materials/fibers electrical conductivity would be 
superior to the less dense fibers and vice versa [37]. Polymer 
optical fiber sensors may detect the damages, their recovery is very 
well at the initial stage, consequently reducing the conservation 
prices [38]. Sensors made from various textiles fibers along 
with good conductivity for health monitoring purposes are the 
extension sensors, pressure sensors, moisture sensing, etc. [39]. 
Fiber optics against electromagnetic radiation, the sensors have 
been reported largely in previous years because fibers immunity/
exoneration was of tremendous quality [40]. Carbon nanotubes, 
graphene nanoplates, carbon nanofibers, and carbon black have 
good electrical conductivity [41]. Conductive metal nanoparticles, 
metal films, and CNTs along with graphene are promising materials 
to make flexible sensors [42]. On the aramid fibers (twaron) 
surface the deposition of silver nanoparticles can be made 
through cross-stacking of PDMS (polydimethylsiloxane) emulate 
a capacitive sensor [43]. Health monitoring based on fibers with 
carbon materials having hierarchical structures, flexible pressure 
sensors, highly sensitive, fast response, and durable sensors has 
been made [44]. Fiber-based smart textiles are assumed to the 
underweight, comfortable, and resilient. Fibers like conductive 
polymers, carbon-based materials, metals, and metal-oxide 
nanoparticles are promising materials/fibers for wearable 
electronic devices [45]. Repeated stretching may decrease the 
conductivity of conductive fibers due to the inner layer damaging. 
However, in conductive fibers, as compared to thin films the 
resistance change or change in resistance due to stretching is very 
low showing high conductivity [46]. Conductive fibers are used 
in wearable electronics by directly woven into textiles. Moreover, 
stretchable conductive fibers are used in underwater wearable 
electronics which can work as wireless charging [47].

Health Monitoring Based on Yarns

Sensors are made from conductive yarns and such yarns 
can be unified into the structures. Many electrodes and sensors 
containing conductive and piezoresistive yarns have many 
applications in the field of e-textiles [48]. Electrically conductive 
yarns into electrodes are quite useful in a situation for long term 
monitoring and healthcare [49]. Wearable systems containing 
conductive yarns for individual finger movements and wrist pulse 
with stretchable strain sensor [50]. The skin temperature can be 
measured by imparting temperature sensors within the textiles. 
Skin temperature sensors maybe not useful in some places where 
the temperature difference is small as compared to the large 
temperature difference [51]. Silver yarns in smart textiles are 
mainly used in threads for connections that have the same damaging 
effect of both washed and unwashed samples [52]. Conductive 
textiles by using yarns as a wearable electrode for physiological 
monitoring of signals are used in ECG (electrocardiogram) [53]. 

http://dx.doi.org/10.19080/CTFTTE.2024.09.555753


004 How to cite this article: Sultan U, Muhammad Adnan S, Zeenat A. Electrically Conductive Yarns (ECY) for Health Monitoring: A Review. Curr Trends 
Fashion Technol Textile Eng 2024; 9(1): 555753. DOI:10.19080/CTFTTE.2024.09.555753

Current Trends in Fashion Technology & Textile Engineering

Research is made on strain sensors comprising conductive wool 
yarn along with the development of soft robotics and healthcare 
applications as well [54]. Variations in yarn TPI (twist/inch) may 
enhance the strength of conductive yarns and a large number of 
items can be made from these stainless staple fibers for final use 
[55]. Strain range for stretchable conductive yarns of composite 
with high elongation at break is used in sensors [56]. Smart 
textiles may be used for energy harvesting, health monitoring, and 
biomedical sensors [57]. Electrically conductive yarns (ECY) are 
made with the desired properties at the different ratios of fiber to 
obtain the need for a particular desired product [58].

Conductive yarns classification is shown in Figure 4 [2]. Health 
monitoring using conductive yarns is one of the most demanding 
areas of research, being consummate the textile-based smart 
technologies. Electronic elements and electrically conductive 
yarns (ECY) are consolidated into the textile substrate to work as 
sensors, actuators, and communication purposes [59]. Electrically 
conductive yarns (ECY) are used for smart wearable devices to 
make various products and yarns is linked in between embedded 
controller, gyroscope, and rest of the instrument portion 
[60]. Nylon/Ag conductive yarns with some high properties 
of sensitivity, flexibility, and stability and have tremendous 
applications for high strain monitoring in the field of medical [61]. 
Conductive yarns make the textile circuit board as the washing 
process damage the connection elements [62]. Carbon nanotubes 
yarn sensors have good deformation along with high sensitivity 
[63]. The core-sheath yarns are inserted into the products having 
the ability to identify the motion of a human. Human body 
motions may be walking, running, jumping, and later on, signals 
are generated for healthcare monitoring purposes [64]. PDMS-
CB (polydimethylsiloxane carbon black) based on stretchable 
strain sensor are used for non-human body health monitoring 
(structural) [62]. Researchers are engaged to make flexible 
electronic devices and to embed them into the fabric structure 
for getting various features [63]. Bespoke testing chamber for 
conductive yarn testing was achieved in an acoustic environment 
[65]. Wearable sensor systems quantifying physical and chemical 
signals are the tools for health monitoring [66]. Smart textiles cover 
the section of observation for customizing treatment of individuals 
with high sensitivity [67]. Several polymers conductivity can be 
enhanced using a processing agent by several orders of magnitude 
[68]. Smart textiles having electronic devices are embedded 
into the structure for transmitting, receiving signals are suitable 
for products with smart features, and monitoring of health 
[69]. Smart sensors can be made from carbon nanotube as raw 
materials with desirable properties. Those desirable properties of 
carbon nanotube may be achieved individually or in a composition 
like electrical, heating, mechanical, and optical properties 
[70]. Silicone materials with insertion of polyester yarn having 
stainless-steel rod from which conductive yarn are prepared for 
the transmission of an electrical signals [71]. Sensors made from 
carbon-based materials in the form of yarns are most probably 
used for strain monitoring, concentration of ions, biomolecules 

concentration, and change in heat [72]. Contemporary, innovation 
in smart textiles products for health monitoring using conductive 
yarn for various purposes [73]. Properties related to strength, 
modulus of electrically conductive yarns made up of different 
fibers/materials having graphene coating are mainly applicable 
for mechanical characteristics [74]. Mostly, textile-based sensors 
are attached directly to the body and they are comfortably fit 
[75]. For wearable health-monitoring electronics, graphene 
has been analyzed as the most promising material [76]. Hybrid 
polyurethane yarns strength and modulus are low, therefore, 
corresponding yarns still in search of better mechanical properties 
[77]. Graphene oxide coating over polyamide yarn provides 
durable electrically conductive yarns (ECY) with excellent fastness 
to washing properties as well [78]. Wearable sensors are mostly 
used for sensing human body movement during walking, running, 
or jumping by transmitting signals, and safe the patient from any 
future danger [79]. Stretchable electronics need flexible materials 
for the development of conductive yarns [80]. For the monitoring 
of joint angles, the wearable sensors fabricated from conductive 
yarns of nylon and spandex materials/fibers have a good feel of 
materials, dry easily, and a hindrance to mildew [81]. Electrically 
conductive yarns have many applications in weave able, knittable, 
and wearable yarn supercapacitors [4]. Polymers with conduction 
characteristics in the form of yarn and nanofillers are added to 
the spinnable polymers to achieve the desired properties [82]. As 
far as flexibility of conductive yarn is concerned, polypropylene 
is suited well. These materials also require excellent coating 
over the yarn surface for maintaining insulation in the existence 
of water [83]. Applying load/stress on elastic conductive yarns 
cannot reduce the conduction properties [84]. Yarns with greater 
conduction are made/spun from the oxide of metals, CNTs, and 
polymers [85]. Polyaniline coated polyester electrically conductive 
yarns (ECY) are stable environmentally, tremendous strength 
as per the requirement, and pliability [86]. Conductive yarn 
properties depend on wire types, diameters, and roving count 
[87]. Mechanical damage for conductive yarn is detected at less 
strain, with no indication of an electrical signal [88]. Shorter the 
distance between the layers of conductive yarns would result in 
better protection from the electric field [89]. Coating textile yarns 
by conducting polymers an immense variety with low surface 
resistivity of the conductive structure has been made [90].

Health Monitoring Based on Fabrics

Power system with self-sustainability in which the devices/
tools of wearable energy harvesting and energy-storing are 
inserted/integrated [91]. Among all the preparatory processes 
of producing fabrics, woven made fabrics are found the best 
conductivity [92]. Conductive yarns from which smart clothing 
are made with outstanding corrosion protection property, and 
phenomenal uses of electromagnetic shielding in the field of 
e-textiles [93]. Military and civilian getting benefit from the 
conductivity-based fabrics made from conductive yarns especially 
of woven made structure [94]. Researchers made advancement in 

http://dx.doi.org/10.19080/CTFTTE.2024.09.555753


005 How to cite this article: Sultan U, Muhammad Adnan S, Zeenat A. Electrically Conductive Yarns (ECY) for Health Monitoring: A Review. Curr Trends 
Fashion Technol Textile Eng 2024; 9(1): 555753. DOI:10.19080/CTFTTE.2024.09.555753

Current Trends in Fashion Technology & Textile Engineering

e-textiles by adding some technology-based features into sensors 
applications or through wireless communication technology. 
To perform diversity measurement, the neonate wears a baby 
jacket having patches (sensors) at six different positions that 
sense bipotential signals [95]. The exploitation of information 
and communication technology for healthcare systems presents a 

challenge to science [96]. A rapid change of interest in new sensing 
and monitoring devices for healthcare has witnessed in the last 
decade [97]. Woven fabric made from the electrospinning of PVDF 
yarns are highly sensitive, better time of response, and durability 
[98]. Plain weave fabrics have higher sensitivity as compared to 
satin and twill weave fabrics [99].

Figure 4: Classification of conductive yarns.

Conclusion

In this review paper, we have found that electrically conductive 
yarns (ECY) are highly sensitive and carry an electrical signal from 
one end to another. These signals are carried by the application 
of pressure/stress/load/force or by some mechanical means. 
Electrically conductive yarns with low resistivity can transmit 
high current with less or no obstruction. Electrically conductive 
yarns have many uses in the field of smart textiles or e-textiles 
such as smart socks, jackets, suits, etc. Smart socks comprise of 
conductive yarns in different positions such as heel, ball, and toe 
regions. The electrical signal is generated by applying pressure 
on the conductive yarns’ regions and among these yarns’ spandex 
provide soft-touch, quick-drying, and mildew resistance. The 
properties of conductive yarn depend on wire types, diameters, 
and materials characteristics. Electrically conductive yarns (ECY) 
of fibers like flax, glass, and polypropylene having graphene coating 
are tremendously known for better mechanical properties. In the 
medical field, nylon/Ag conductive yarns with high sensitivity, 
stability, and flexibility are used for health monitoring as well. 
The electrical conductivity of yarns decreases over time due to 

the washability factor. Researchers are still trying to make ECY 
having good electrical conductivity after washing several times. 
Moreover, Smart textiles may be used for energy harvesting, 
health monitoring, and biomedical sensors.
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