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Introduction
In the last decades, Magnetic Resonance Imaging (MRI) 

has been established as an important imaging modality in the 
diagnosis of brain tumors. Brain tumors such as Glioblastoma 
Multiforme (GBM) are a leading cause of solid tumor related 
cancer in adults, with less than 5% of the patients surviving 
five years after diagnosis [1]. GBM tumors are characterized 
by abnormal and uncontrolled cell proliferation, necrosis and 
vascular proliferation [2].

Researchers have focused on robust techniques for detection 
of tumors in MRI based on feature extraction and segmentation. 
However, two important confounding factors complicate the 
detection of tumors. First, intensity in homogeneity can cause 
a variation in intensity of a particular tissue across the field 
of view [3], and second, the intensity of a single voxel may be 
composed of signal from more than one distinct tissue type [4]. 
The most basic tissue-segmentation method is global intensity 
thresholding. This assumes a voxel intensity can be identified 
which assigns each voxel into a background class (voxels less 
intense than the threshold) or a foreground class (voxels more 
intense than the threshold). It may be possible to correct 
such intensity variation prior to segmentation. An alternative 
approach is to use local (adaptive) thresholding where the  

 
intensity threshold is variable and is computed over sub images 
or over a region of interest around each voxel. Feature extraction 
segmentation involves extracting of characteristic parameters 
based on correlation, contrast, homogeneity, isotropy, shape 
around neighboring pixels. Among texture feature, fractal 
analysis has been successful capturing the intricate and complex 
tumor pattern [5]. Further, multifractional Brownian motion 
(mBm) feature effectively models spatial varying heterogeneous 
tumor texture at different scale [6,7].

Automatic algorithms combines MRI in homogeneity 
correction for anatomical structure, registration and 
segmentation using atlas-based approach. These works mostly 
use EM method to obtain appropriate parameters for intensity 
correction, feature selection and registration transformation 
between atlas and MR images with lesions. Pohl et al. [8] have 
combined registration, intensity correction and segmentation 
of thalamus region in EM framework [8]. Well et al. [9] present 
methods to correct MRI intensity in homogeneity and segment 
MR images [9]. Gooya et al. [10] investigate brain tumor 
growth modeling, atlas registration and segmentation of brain 
tumors in EM framework [10] and considers tumor growth and 
deformable registration while registering a normal brain atlas 
with images of brain tumor patients for tumor segmentation 
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Abstract

Multiresolution texture features such as fractal dimension (FD) and multi fractional Brownian motion (mBm) have shown to offer robust 
tumor and non-tumor tissue segmentation in brain MRI. Multiclass Kullback Leibler Divergence (KLD) for feature selection can effectively 
select features for tumor, cyst and non-tumor tissues in multimodal MRI. In this work, we propose an information theoretic framework for 
improved brain tumor segmentation. Our proposed method combines all necessary steps such as MRI in homogeneity correction, feature 
extraction, multiclass feature selection and tumor, cyst and non-tumor tissue segmentation respectively in an integrated framework. Our 
integrated framework allows one to observe effect of each step in the end tumor segmentation results. Finally, we evaluate our method using 
12 patients in T1, T2 and FLARI modalities.
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[11]. Leemput et al. [12] developed fully automatic segmentation 
of brain MR images by statistical classification using an atlas 
prior both for initialization of probability density functions 
and also for geometric constraints, solved as an EM algorithm 
[12]. The method has been shown to be very robust and highly 
reproducible for normal brain images but fails in the presence of 
large pathology.

In this work, we propose an integrated EM framework for 
feature-based brain tumor segmentation without the need for 
atlas-based image registration. Furthermore, we investigate 
improved tumor segmentation by delineating cyst tissue from 
tumor clusters in the same framework. The tumors may contain 
sphere like structures filled with fluid called cysts in addition 
to their solid components. When tumor has an associated cyst, 
there is generally a mass, or at least a thickening of the rim, 
visible on CT or MRI scans [13]. The segmentation of these 
surrounding tissues such as cyst and necrosis are very difficult 
due to the surrounding changes and distortion on MRI, location 
and size. We obtain in homogeneity correction, multiclass feature 
selection for tumor, cyst and non-tumor tissues and tumor 
segmentation exploiting a single EM framework. We validate 
our tumor and cyst segmentation results at pixel using different 
similarity metrics. Such an integrated information theoretic 
model can help in detection and robust segmentation of brain 
tumors.

Methods and Materials Participants
A data set of 12 patients was collected from the 

publicly available Cancer Imaging Archive (http:// www.

cancerimagingarchive.net\) database for our study. The patients 
underwent T1- contrast, T2 and FLAIR acquisitions. The 
acquisition parameters were: Magnetic field strength = 3T, Flip 
angle = 90-degree, slice thickness = 5mm. The scan parameters 
for T1- weighted image are: TR = 168ms, TE = 8ms; the scan 
parameters for T2-weighted image are: Turbo Spin Echo, TR = 
6430, TE = 114ms, 14 echoes/TR; scan parameters for FLAIR 
images are: TR = 9500ms, TE = 133ms.

Mathematical computation
The overall flow diagram of the method is shown in Figure 

1. We use a Bayesian approach to estimate the bias field in MR 
intensity image. The method assumes a Gaussian distribution 
for the different tissues or classes. The bias field estimate is 
determined by applying a linear operator to the mean residual 
field. The parameter for linear operator is determined by the 
mean covariance of the tissue class intensities and the covariance 
of the bias field [9]. Once the bias field is corrected, we apply 
low pass Gaussian filter for correcting the in homogeneity in 
MR images. After in homogeneity correction we obtain multi 
resolution fractal (texture) features such as FD and mBm from the 
normalized images in T1, T2 and Flair modality. The best feature 
was selected based on the largest distance obtained by Kullback 
Leibler Divergence (KLD) for tumor, cyst and non-tumor regions, 
for specific features [14]. Finally, support map or probability 
map is constructed containing the mean and variance associated 
with a pixel for the best features. The labeling of map for each 
cluster offers the segmentation for the associated classes which 
in turn is represented by the best features. The detail steps of our 
model are discussed next.

Figure 1: Flowchart of inhomogeneity correction, feature selection and segmentation using EM framework. Dotted box shows our integrated 
framework.

Information theoretic modeling for in homogeneity 
correction, feature selection and segmentation

In this work, we obtain an EM framework for computing the 
in homogeneities B and feature selection FS for MR images I. It is 
difficult to compute these two parameters without considering 
any hidden variable. We assume segmentation G as a hidden 
variable. When properly defined, the EM framework gives two 

important guarantees. First, each iteration yields an improved 
estimate of ( , )B FS  as measured by Eqn. (1). Second, the 
algorithm converges to local maxima of the objective function. 
The conditional probability distribution function describing I is 
given as ( , , , )P I B FS G . We want to estimate B and FS from this 
framework which is given as, 

, , ', ', '( ', ') arg max , (log ( / , , ) log ( / , ) log ( / ))B FS G I B FSB FS E P I G B FS P FS G B P B G= + +
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 Both in homogeneity and feature selection can jointly affect 
the segmentation in MRI. However, in this work, we assume B 
and FS as separate parameters for simplicity of modeling. The 
optimization procedure decomposes Eqn. (1) based on the 
following independence assumptions. First, we assume the 
independence of I with respect to FS conditioned on T and B. 
We can therefore characterize each anatomical structure with 
an intensity distribution based on the tissues or classes which 
is not influenced by the mapping between the atlas and image 
space. Secondly, we assume FS independent of B conditioned on 
T. Finally, we assume independence of B with respect to T as the 
image in homogeneities are caused by the radio frequency coil of 
the scanner. Thus, it simplifies to the following, 

, , ', ', '( ', ') arg max (log ( / , ) log ( / ) log ( ))B FS G I B FSB FS E P I G B P FS G P B= + +

 The hidden variables { }1 2, ,..... nG G G G=  are the number of 
segments for each pixel ‘x’ denoted by Gx and take values from 
the set of k-dimensional unit vectors { }1 2, ..... ke e e  where x kG e= , 
meaning that x  pixels belong to tissue k  or cluster k . The E step 
is equivalent to calculating the probability map in the presence 
of hidden variable G and given the estimates of ( ', ')Bx FS  for a 
particular tissue k  using Baye’s rule as follows, 

( / ( , ' , ') ( ( ) / ' , '))( )
( / ' , ')

x x k x x k x
x

x x

p I G k e B FS P G k e B FSW k
p I B FS

= =
=

 

 The M-step maximizes the estimates parameters B′ and FS′ 
on probability maps Wx(k) and are given as, and

( )' arg max log ( / , ) log( ),B x k x ekB W P Ix G B B and== ∑∑ +

 ( )' arg max log ( / ) log( )B x k x ekFS W P FS G FS== ∑∑ +

Estimating the intensity in homogeneities: Consider Eqn. 
(2) to define in homogeneities as follows, 

where kγ , kµ  are the mean and variances for a particular 
tissue, numbers of pixels for each class to Bayes classifier and 
obtain Ix is value of intensity feature at pixel x, xβ  is the bias 
field at the pixel x for particular tissue or class. 
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Estimating the Feature Selection

Feature selection using KLD is given as

1 1( / ) log 1 ((log( )) ( )
2

k

G
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x ek k
k m k

P G FS µµσσ
σ σ σ

−
=

    = − + + +   
      

Where, mσ , kσ , mµ , kµ  are the mean and variance of 
different tissues or classes. The segmentation G depends on 
the best feature selected using KLD. The KLD represents the 
conditional probability for two classes or tissues which are 
tumor/non-tumor, tumor/cyst and cyst/non-tumor. The KLD 

considers the mean and variance for the two classes or tissues 
for a particular texture feature and these means and variances 
are updated during M step. The segmentation for different 
tissues is related with the updating of probability maps which 
are updated for in homogeneity and feature selection.

Estimating segmentation accuracy
The selected best features are utilized for finding the number 

of pixels for tumor, cyst and non- tumor tissues. These pixels 
are used as the input to Bayes classifier to obtain the posterior 
probabilities for respective tissues. We then find segmentation 
accuracy based on posterior probabilities. Note we have two 
major types of features in this study such as intensity and texture 
(mBm or FD) that can be selected as the best to represent any 
given tissue. Therefore, we show the segmentation accuracy 
computation for these two features below.

Segmentation accuracy using intensity feature: The 
segmentation accuracy using intensity feature can be obtained 
by computing the number of pixels correctly classified using a 
Bayes Classifier. We compute the number of pixels for every class 
such as tumor, cyst and non-tumor. We input total number of 
pixels for each class to Bayes classifier and obtain the posterior 
distribution for each class. We then calculate the number of 
pixels correctly classified based on posterior value, and hence, 
the tumor segmentation accuracy.

Segmentation Accuracy using mBm Feature: Texture 
features such as FD and mBm are non-linear feature extraction 
process. Therefore, there does not exist one-one relationship 
between texture features and the final tumor pixels. In order to 
compute pixel level accuracy for tumor segments using texture 
features, we consider sub images which cover the tumor region. 
We then obtain a suitable threshold values for locating interior 
pixels and exterior pixels in those sub-images. Following our 
prior work (12), to obtain number of tumor pixels for mBm 
feature case, we obtain covariance image and decompose the 
variance image using multi resolution wavelet theory. The 
resulting decomposed image is divided into sub images of size 
8x8. We then compute the wavelet coefficients for all the pixels 
in the subimages. We obtain the histogram for each sub images 
given as, 

2

2

( ( , ) )
( ( , ) )

x
k

x

E W s ar
E W s a

=
∑

 

The histogram offers variation in wavelet coefficients for 
the sub images. We then obtain a suitable threshold for interior 
pixels and exterior pixels for selecting T, or C sub images. We 
finally compute the correctly classified pixels based on posterior 
value.
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Results and Discussion
Segmentation results using our integrated model

Figure 2 shows the in homogeneity correction results at 
different iterations using integrated EM- based framework for MR 
image of patient with tumor in T1 modality. The integrated EM 
model in this work offers mBm and intensity as the best features 
for tumor vs. non-tumor and cyst vs. non-tumor segmentation 
respectively. Note in our prior work, mBm is identified as the 
best feature for segmenting tumor from non-tumor tissues using 

two classes KLD [7]. In a recent work, we extend two-class KLD to 
multiclass KLD for best feature selection among tumor, cyst and 
non-tumor tissue types and find that the best feature for tumor 
vs. non- tumor segmentation is mBm while that for cyst vs. non-
tumor is intensity [14]. Figures 2 shows the corresponding tumor 
segmentation results for mBm feature using our integrated 
model. We observe that good tumor segmentation is obtained at 
60th iteration with cluster 5. Further, Figure 2 shows the cyst 
segmentation and the best result is obtained in cluster 4 also at 
60th iteration.

Figure 2: Inhomogeneity iteration at 15th, 30th, 45th, 60th iteration; Segmentation of tumor and cyst at 15th, 30th, 45th, 60th iteration using KLD 
-EM framework for tumor vs. non-tumor for mBm feature and cyst vs. non-tumor for intensity feature in T1 modality.

Segmentation validation
Table 1 shows the similarity overlap coefficients of the 

tumor segments obtained using our model and the radiologists’ 
ground truth for all 12 patients. Table 1 suggests that tumor 
segmentation accuracy varies between 91% - 94% using all 

four differ overlap metrics while that for cyst varies between 
90% - 93% respectively. Note for our integrated model proposed 
in this work, we can perform in homogeneity correction, and 
feature selection; and observe the effect of these steps on tumor 
segmentation simultaneously.

Table 1: Summary of similarity coefficients for 8 patients for segmented tumor and cyst in integrated framework.

Patient

Pixel based Similarity Coefficients for Tumor (mBm 
Feature)

Pixel based Similarity Coefficients for Cyst (Intensity y  
Feature)

Jaccard 
Coefficient

Dice 
Coefficient

Sokal & 
Coefficient

Sneath 
Russel  

Coefficient

Rao Jaccard 
Coefficient

Dice 
Coefficient

Sokal & 
Coefficient

Sneath 
Russel & Rao 

Coefficient

1 89% 90% 91% 91% 85% 87% 87% 87%

2 91% 91% 92% 91% 91% 92% 92% 91%

3 91% 93% 93% 92% 91% 92% 91% 91%

4 92% 93% 93% 93% 90% 91% 92% 92%
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5 93% 94% 93% 93% 91% 92% 92% 92%

6 91% 93% 92% 92% 92% 92% 92% 91%

7 94% 94% 92% 94% 93% 93% 92% 92%

8 91% 93% 93% 91% 92% 92% 91% 91%

9 90% 91% 90% 90% 88% 87% 88% 87%

10 91% 90% 89% 88% 87% 86% 87% 88%

11 92% 91% 89% 88% 87% 85% 87% 87%

12 88% 89% 88% 87% 86% 85% 86% 87%

Conclusion
In this work we propose an integrated EM model to combine 

three steps such as in homogeneity correction, feature extraction 
and feature selection for brain tumor segmentation. To achieve 
segmentation validation, we obtain pixel counts for segmented 
tumor or cyst tissues and use different similarity coefficients 
to measure overlap between the segmented tissues with those 
of the radiologists’ ground truth at the pixel level. The overlap 
measures show about or above 90% segmentation validation 
performance for both cyst and tumor tissues. To the best of our 
knowledge, an integrated model for MRI preprocessing, feature 
extraction, and feature selection for tumor and cyst segmentation 
has not been studied until now. Such an integrated framework 
can be useful for brain tumor detection and adjuvant therapy 
planning.
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